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Exact method for the simulation of Coulombic systems by spherically
truncated, pairwise r 21 summation

D. Wolf,a) P. Keblinski, S. R. Phillpot, and J. Eggebrecht
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 9 July 1998; accepted 5 February 1999!

Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather
short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb
potential by direct summation over ther 21 Coulomb pair potential is presented. The key
observation is that the problems encountered in determining the Coulomb energy by pairwise,
spherically truncatedr 21 summation are a direct consequence of the fact that the system summed
over is practically never neutral. A simple method is developed that achieves charge neutralization
wherever ther 21 pair potential is truncated. This enables the extraction of the Coulomb energy,
forces, and stresses from a spherically truncated, usually charged environment in a manner that is
independent of the grouping of the pair terms. The close connection of our approach with the Ewald
method is demonstrated and exploited, providing an efficient method for the simulation of even
highly disordered ionic systems by direct, pairwiser 21 summation with spherical truncation at
rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in
ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems,
such as free surfaces and grain boundaries. ©1999 American Institute of Physics.
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I. INTRODUCTION

The classic Madelung problem,1 i.e., the problem of
evaluating the Coulomb potential of condensed systems
direct, pairwiser 21 summation, and its consequences for t
physics of ionic crystals and liquids, have received consid
able attention throughout this century. The well-know
Ewald method2 has long been the method of choice f
evaluating energies, forces, and stresses in the simulatio
ionic liquids and solids. The method is based on a ma
ematical manipulation of the total Coulomb energy of a
of N ions, with chargesqi at positionsr i that are part of an
infinite system of point charges,

Etot5
1

2 (
i 51

N

(
j Þ i 51

`
qiqj

r i j
, ~1.1!

to achieve rapid convergence for what is mathematicall
conditionally convergent expression; herer i j 5r j2r i and
r i j 5ur i j u. The ‘‘trick’’ to the method consists of~i! artifi-
cially imposing structural periodicity on the generally ape
odic system,~ii ! multiplying the resulting expression b
unity, thus rewriting Eq.~1.1! as

Etot5
1

2 (
i 51

N

(
j 51

N

( 8
n50

`
qiqj

ur i j 1nLu @erfc~aur i j 1nLu!

1erf~aur i j 1nLu!#, ~1.2!

and ~iii ! taking the Fourier transform of only the erro
function expression,
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p1/2E
0

ar

exp~2t2!dt, ~1.3!

@with erf(0)50 and erf(̀ )51# but not of the complementary
error-function term,

erfc~ar !512erf~ar !. ~1.4!

The vectorn5(nx , ny , nz) in Eq. ~1.2! denotes the three
dimensionally~3D! periodic images of the simulation cell o
linear sizeL; the prime indicates that, obviously,nÞ0 for i
5 j . The conditionally convergent total energy of the ape
odic system in Eq.~1.1! has thus been converted, by a fe
mathematical tricks, into the sum of rapidly converging re
space and reciprocal-space contributions,

Etot5Er
tot1Ek

tot , ~1.5!

of the artificially periodic system. Herek represents the
reciprocal-lattice vectors associated with the 3D perio
simulation cell.

As a physicist one cannot help but think that the abo
mathematical procedure, converting a problem with no tra
parentphysicalsolution into a straightforwardmathematical
exercise, is a scientific form of ‘‘black magic.’’ At the ver
least, one would like to~i! understand the physical implica
tions of these manipulations and, even more important,~ii !
expose the overall range of thetotal potential experienced by
the ions, given that ther 21 pair potential is, indeed, very
long ranged. Addressing these issues is the main purpos
this article.

From a conceptual viewpoint, the aperiodic nature of
original system should, in principle, be restored as the li
in which the reciprocal lattice vectors,k, tend toward zero.
4 © 1999 American Institute of Physics
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In practice, however, the reciprocal-space term, which
counts for long-range effects in the Coulomb potential,
usually retained. This has given rise to the popular notion
the long-ranged nature of the Coulomb potential in co
densed ionic systems, and to the attribution of some ‘‘ty
cally ionic’’ phenomena, such as the long-range charge
dering in ionic liquids,3 to the long-range nature of th
Coulomb pair potential.

There is much evidence, however, both theoretical4 and
from computer simulations,5,6 that the effective Coulomb in
teractions in condensed systems are actually rather s
ranged. For example, the direct-summation method dev
by Evjen,4 in which fractional charges are assigned to t
ions according to their site symmetry, strongly suggests
effectively short-ranged nature of the Coulomb potential
the perfect crystal. Computer simulations of ionic melts ha
also contributed significantly to the growing body of ev
dence that at long range there is almost complete canc
tion of Coulombic effects.5,6 In fact, it has been
demonstrated5 that in practice the reciprocal-space part of t
Ewald sum can be neglected entirely without affecting
underlying physics, leading Clarkeet al.5 to develop ‘‘short-
range effective’’ potentials for the simulation of ionic liq
uids. Clearly, if the potential in Eq.~1.5! is therefore rather
short ranged and essentially given by only the real-space
@see also Eq.~1.2!#, the original potential in Eq.~1.1! must
also be rather short ranged and, paradoxically, essent
identical to the real-space part of the Ewald sum. Howeve
is far from obvious how this can be. To elucidate this app
ent paradox is one of the purposes of this article.

A key driving force for finding alternatives to the Ewa
method is its high computational load, which in a simp
implementation increases as O~N2!. Moreover, even with an
optimal balance of the real-space and reciprocal-space
tributions Fincham7 has shown that the computational loa
increases at best as O~N3/2!. Therefore, in recent years sum
mation algorithms known as fast-multiple methods that
computationally superior to the Ewald method have beco
available for the simulation of Coulombic systems.8–10Based
on the summation of the multipole expansion of Eq.~1.1!,
these order-N methods are particularly suited for the simul
tion of very large systems. In addition to their computation
efficiency, these methods have the conceptual advan
over the Ewald sum of being more directly connected w
the physics of ionic systems. Unfortunately, however, l
the Ewald method they provide little physical insight into t
effective range of the Coulomb potential and are therefore
little help in elucidating the physics of ionic systems from
more intuitive point of view.

That the effective Coulombic potential of the ions
condensed systems is actually rather short ranged was
onstrated more recently by Wolf.11,12By presenting a method
for the evaluation of the Madelung constant for perfect cr
tals that involves directr 21 lattice summation over neutra
dipolar ‘‘molecules,’’ Wolf showed that the ‘‘true’’ Made-
lung potential of an ion due to its pairwiser 21 interaction
with all the other ions falls off asr 25.11 Based on this insigh
and as a test of his method, he suggested that most io
crystal surfaces should be systematically reconstructed,
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ticularly surfaces on charged crystal-lattice planes, an as
tion tested by simulations of rocksalt structured surfaces11,12

and later verified experimentally.13

In this article we will revisit the classic Coulomb prob
lem, starting from an analysis of the physical reasons for
problems encountered when attempting to evaluate the C
lomb potential of condensed systems by simple, pairwiser 21

summation~Sec. II!. The key recognition from this analysi
is that the lack of electroneutrality prevents the pairwi
direct 1/r sum in Eq.~1.1! over spherical crystal-lattice shell
from converging. In Sec. III a simple method is developed
achieve charge neutralization wherever ther 21 pair potential
is spherically truncated, enabling the extraction of the C
lomb energy, forces, and stresses from a usually char
environment. The correspondence between the cha
neutralized and the shifted Coulomb pair potential is est
lished, leading to a general method for smoothly shifting a
interatomic potential and its derivatives in a manner t
yields values for the energy, forces, etc. as close as desire
the correct~unshifted! ones. While a number of empirica
approaches involving charge neutralization have been t
in the past,5,14,15here we develop a firm theoretical basis f
the concept.

The concept of local charge neutrality leads naturally
a distinction between the true Madelung potential16 and, as a
part of it, the ‘‘charge-neutralizing’’ potential associate
with the spherically truncated environment of each ion~Sec.
III !. By definition, the Madelung potential is unique in that
is entirely independent of the embedding of each ion in
local environment; it can be compared directly to that o
tained from the Ewald sum. Plotted against the truncat
radius, this potential is found to oscillate systematically, in
damped manner, about its fully converged value~Sec. IV!,
suggesting that the ‘‘bare’’r 21 Coulombpair potential can
be replaced by a damped pair potential without significan
affecting the converged value of the Madelung potential.
justifying and carefully investigating the effects of dampin
the close connection of our approach with the Ewald meth
is demonstrated~Secs. V and VI!. This leads to a simple
physical interpretation of the Ewald sum. Finally, to valida
our method directly, in Sec. VII we compare molecula
dynamics simulations using direct, pairwise dampedr 21

summation with spherical truncation with the results o
tained via the full Ewald sum.

II. BACKGROUND

A. Charge neutrality and direct r 21 summation

The well-known problems encountered when attempt
to determine the Coulomb energy by direct, pairwiser 21

summation overcrystal-latticeshells out to some distanceRc

are illustrated in Fig. 1 for the simple case of a rocksa
structured perfect crystal at zero temperature.12 Shown in
Fig. 1~a! is the energy,Ei

tot(Rc), of removing some arbitrary
ion, i, from the perfect crystal.Ei

tot(Rc) is related to the total
energy of the system as follows@see Eq.~1.1!#:
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Etot~Rc!5
N

2 (
j Þ i

~r i j ,Rc!

qiqj

r i j
5

N

2
Ei

tot~Rc!. ~2.1!

According to Fig. 1~a!, the energy per ion thus define
fluctuates dramatically between large positive and nega
values, with no indication of convergence towards the c
rect Madelung energy,EMad523.495 129q2/a, for rocksalt4

~dashed line!. ~We note that this value, given in units of th
lattice parameter, is twice that given in units of the neare
neighbor distance,a/2, for the NaCl lattice.4! With a value
largely determined by the terminating crystal shell atRc ,
from Fig. 1~a! it appears impossible to determine even t
sign of the Madelung energy, irrespective of the volume
the system contained by the surface atRc . This behavior
illustrates the conditional convergence of the sum in E
~1.1!, i.e., that the value of the Coulomb energy depends
the manner in which the sum in Eq.~1.1! is terminated and
on the order in which the terms are grouped.

FIG. 1. Total Coulomb energy per ion~in units of the inverse lattice param
eter, q2/a! obtained by simply summing the Coulomb pair potenti
6q2r 21, over shells of the rocksalt lattice.~a! Energy per ion against cutof
radius,Rc , assumed to coincide with crystal-lattice shells; the arrows in
cate cutoff radii where the crystal lattice is exactly or nearly neutral~b!
energy per ion against the difference,N(1)2N(2), between the total
number of cations and anions contained in a crystal-lattice sphere of ra
r. The fully converged value (Rc→`) of the Madelung energy for this
structure is indicated by the dashed line.
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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Figure 1~b!, showing the energies of Fig. 1~a! plotted
against the net charge,Dq(Rc), in the spherical volume be
tweenr 50 andr 5Rc , gives some indication as to the or
gin of this behavior.12 Clearly, the deviations from the cor
rect Madelung energy~dashed line! are approximately
proportional toDq(Rc), suggesting that a reasonably goo
value ofEMad could be obtained if one could find a way t
render the volume summed over neutral. Indeed, when
system is neutral or almost neutral, values close to the
rect Madelung energy are obtained@see the arrows in Fig
1~a! corresponding to cutoff radii,Rc /a, of 0.866, 2.739, and
3.464 and values ofDq(Rc)/uqu of 22, 22, and 0, respec-
tively#. These observations suggest that the large fluctuat
in Fig. 1~a! arise from the fact that the NaCl lattice is pra
tically never neutral when terminated by complete crys
shells.

B. Short-ranged nature of the Madelung potential in a
perfect ionic crystal

Based on the idea of charge neutralization, a sim
method for determining the Madelung constant of a perf
crystal lattice was presented recently by Wolf.11 As illus-
trated in Fig. 2~a!, this approach involves ar 21 sum over the
neutral shells of theBravais lattice, with the proviso that no
basis molecule may be broken up and thus guarantee ch
neutrality wherever ther 21 pair potential is truncated; by
contrast, the sum sketched in Fig. 2~c! involves the charged
shells of thecrystal lattice. For example, the rocksalt stru
ture consists of a face-centered-cubic~fcc! Bravais lattice
~open circles in Fig. 2! and a dipolar Na1Cl2 basis molecule;
the latter is characterized by the basis vectorb. As illustrated
in Figs. 2~a! and 2~b!, this results in the generation of tw
identical, oppositely charged fcc sublattices that are d
placed relative to each other by the vectorb. The total ‘‘mo-
lecular’’ Coulomb energy of some ioni at the origin is then
given by11

Ei
mol52

q2

b
1q2 (

j Þ i 51

N/2

(
j 851

2 S 1

r i j
2

1

r i j 8
D

5Ei
intra1(

r s

Ei
inter~r s!, ~2.2!

where the first term represents the ‘‘intramolecular’’i

-

ius

FIG. 2. ~a! Neutral shells of NaCl molecules are obtained by attachmen
the Na1Cl2 basis dipoles to the sites of the fccBravais lattice~schematic;
open and closed circles denote Na1 and Cl2 ions, respectively!. As illus-
trated in ~b!, this results in the generation of two identical, opposite
charged fcc sublattices that are displaced relative to each other by the
vectorb. ~c! Spherical truncation ofcrystal-latticeshells usually results in a
charged local environment of the ion at the center.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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2i8) interaction while the second is the ‘‘intermolecular
interaction of ioni with the molecules in shells with rad
r i j [r s @see Fig. 2~a!#.

Intuitively one would expect the double sum in Eq.~2.2!
~involving first all the Bravais sites and then the Na1Cl2

basis molecules attached to each site! to converge rapidly for
the following three reasons@see Fig. 2~a!#. First, the interac-
tion energy of ion i with a complete molecule,q2/r i j

2q2/r i j 8 , is small compared to its interaction energy wi
each individual ion in the molecule. Second, because
direction of b is fixed while that ofr i j is averaged over a
discrete set of Bravais points on a sphere@see Fig. 2~a!#,
within a given Bravais-lattice shell of fixed radiusr s the
values of 1/r i j 21/r i j 8 vary between small positive and neg
tive because the angleq j 8 betweenr i j and b is symmetri-
cally distributed; the sum overj in Eq. ~2.2!, involving all the
molecules in a given Bravais shell, therefore involves diff
ences between already relatively small terms. Third, the v
small positive and negative shell-by-shell values,Einter(r s),
thus obtained are further averaged while being summed
all Bravais shells; asr s increases, these rapidly decreasi
small negative and positive values thus effectively averag
zero.

While this dipolar approach guarantees that the cry
lattice is neutral irrespective of where the pairwise sum
truncated, it suffers from the problem that a sum over sh
of dipoles cannot be terminated without rendering the sys
as a whole polarized@see Fig. 2~b!#. To obtain the correct
Madelung energy, the polarization energy per unit volum
Epol, therefore has to be subtracted from the expressio
Eq. ~2.2!, i.e.,

Ei
Mad5Ei

mol2Epol. ~2.3!

According to de Leeuwet al.,15 Epol is given by the dipole
moment,qb, that each molecule contributes to the polariz
tion of the system,Epol5(2p/3V)(qb)2, where V is the
‘‘molecular’’ volume. For example, in the fcc lattice,V
5a3/4; with ubu5a/2 for the Na1Cl2 basis molecule, this
expression givesEpol5(2p/3)q2/a52.094 39/a.

By choosing a basis molecule without a dipole mome
the polarization correction in Eq.~2.3! can be avoided alto
gether. Thus, instead of viewing the NaCl lattice as a
Bravais lattice with adipolar basis, one can choose th
simple cubic~sc! Bravais lattice with a cube-shapedoctopo-
lar (NaCl!4 basis.11 Avoiding thus the generation of a mac
roscopic polarization, the directr 21 sum based on Eq.~2.2!
gives the correct Madelung energy directly, without any c
rection. The results of the evaluation of Eqs.~2.2! and ~2.3!
for a ‘‘molecular’’ rocksalt lattice viewed in either of thes
two ways~fcc versus sc Bravais lattice, dipolar versus oc
polar basis! are summarized in Fig. 3.

A formal investigation of the convergence behavior
Ei

mol in Eqs. ~2.2! and ~2.3! with Figs. 2~a! and 2~b! was
presented in Ref. 11, showing thatEi

mol can be written as an
expansion in powers of (b/r s)

n11 (n54,6,8...,). The leading
term has the form11

Ei
mol'

7

8

q2

b (
r s

N~r s!S b

r s
D 5

@125c4~r s!#, ~2.4!
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whereN(r s) is the number of sites~i.e., Na1Cl2 molecules!
in a given Bravais shell, and cn(r s)[^cosn q&rs

5@1/N(r s)#S j 8(r s)
cosn qj8 represents an average perform

over each Bravais shell@see also Fig. 2~a!#. Because of the
inversion symmetry of Bravais lattices, all odd powers
cn(r s) vanish identically.

We note that the coefficients in the expansion in pow
of (b/r s)

n11 (n54,6,8...,) given in Ref. 11 are actually th
Legendre polynomials,Pn(x), of x5cn(r s).

17 Moreover,
from the addition theorem the Legendre polynomials may
written in terms of spherical harmonics.17 It is precisely such
an expansion of the electrostatic potential in terms of sph
cal harmonics that forms the basis for the fast-multip
methods.8–10

We also mention that for the case of the rocksalt str
ture the directr 21 sum involving octopolar building blocks
reproduces Evjen’s sum4 identically while avoiding the am-
biguities associated with the assignment of fractional char
to the ions in the unit cell.4 Also, based on the above insigh
it was predicted11,18 that all rocksalt structured surface
should be fundamentally reconstructed such that the octo
lar building blocks are not broken up. One such reconstr
tion has indeed been recently observed,13 and this strongly
supports the validity of the physical picture underlying t
above convergence analysis.

The effective range ofEi
mol in Eq. ~2.4! may be esti-

mated by determining how the error,DEMad(Rc), due to the
truncation varies as a function ofRc . This error is given by
the interaction of ioni with all the ions beyond some cutof
radius,Rc :

DEMad~Rc!5 (
r s.Rc

N~r s!Veff~r s!'rE
Rc

`

drs4pr s
2Veff~r s!,

~2.5!

where the sum was converted into an integral andr is the
number density;Veff(rs) represents the effective pair potenti
defined by comparison with Eq.~2.4!. The shell-by-shell val-

FIG. 3. Madelung energy for the NaCl lattice against cutoff radius obtai
by direct lattice summation involving either a fcc Bravais lattice with
dipolar basis~open symbols! or a sc Bravais lattice with an octopolar bas
~closed symbols!. The horizontal line indicates the correct Madelung ener
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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ues ofc4(r s) scatter practically randomly about 0.2,12 i.e.,
125c4(r s) fluctuates about zero, giving rise to the prac
cally random fluctuations about zero in the dipolar values
Ei

mol in Fig. 3. To obtain an upper bound for the envelope
these fluctuations, 125c4(r s) can be set equal to some co
stant; withVeff(rs);rs

25, the integral then yields a quadrat
decrease,DEMad(Rc);Rc

22. For comparison, withVeff(r)
;r26, the Lennard-Jones potential givesDE(Rc);Rc

23.

C. Convergence behavior for disordered systems

That the above convergence arguments are not limite
perfect crystal lattices nor even solids is readily seen. M
computer simulations of solids and liquids make use of a
ficially imposed 3D periodic cell borders, particularly whe
evaluating the Coulomb energy and forces via the Ew
method. A simple way of mapping a liquid onto the abo
molecular way of thinking, for example, is to considerthe
entire simulation cellas the neutral ‘‘molecule’’ attached t
the sc lattice of the periodic simulation-cell images. At a
instant the simulation cell will exhibit some small net dipo
moment, enabling a power expansion mathematically ide
cal to that in Eq.~2.4!. Even in a liquid ther 25 convergence
therefore results.

Apart from this convergence argument, in practice
simulation of a highly disordered ionic system in the spirit
the above molecular, directr 21 sum is not trivial and is
computationally rather inefficient. It necessitates some ar
cial and computationally cumbersome grouping of the io
into molecules, combined with a method for truncating t
r 21 pair potential. In one implementation of this approa
for the molecular-dynamics simulation of ionic melts,19 trun-
cation of the pair potential was avoided altogether by su
ming to full convergence. These simulations exhibited
ergy conservation and gave thermal properties in
agreement with similar simulations using the Ewald sum19

Nevertheless, a more practical approach is clearly nee
Such an approach should combine the conceptual adva
associated with recognizing the short-ranged nature of
effective Coulomb potential of the ions with a computatio
ally efficient and physically transparent method for trunc
ing the r 21 pair potential.

III. PAIRWISE, SPHERICALLY TRUNCATED r 21 SUM

The present situation, described in Secs. I and II, can
summarized by the following four observations. First, F
1~a! demonstrates the well-known fact that the total Co
lomb energy of a given system obtained by evaluating
~1.1! depends entirely on the manner in which the ions
surrounded for the purpose of evaluating the pairwiser 21

double sum.
Second, the ‘‘molecular’’ approach reviewed in Se

II B and II C reveals that the true Madelung potential of t
ions is rather short ranged even in a highly disordered s
or in liquids. However, in order to recognize this proper
the pairwiser 21 double sum in Eq.~1.1! has to be performed
in such a manner as to ensure a neutral local environmen
each ion.
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Third, the slow rate of decay of ther 21 Coulomb pair
potential has to be distinguished from the fast rate of conv
gence of the Madelung energy as a function of the cu
radius,Rc .

Fourth, largely due to the reciprocal-space term,
range of the net Coulomb potential obtained from the Ew
sum is not clear. Although in the Ewald method little atte
tion is paid to the manner in which the ions are surround
its numerical robustness suggests that the underlying po
tial is also rather short ranged.

How these four observations are connected is not ob
ous, as evidenced by a considerable body of literature
has dealt with the Coulomb problem in condensed syste
throughout this century. It is the main purpose of this arti
to elucidate these connections.

A. Madelung potential of a perfect crystal from
spherical truncation

We start by considering the twofinite perfect-crystal sys-
tems sketched in Figs. 2~a! and 2~c!. To understand the dif-
ference between the energy of ioni at the center of Fig. 2~c!,
on the one hand, and at the center of Fig. 2~a!, on the other,
we observe that the charged system in Fig. 2~c! represents
merely a spherically truncated subset contained in the neu
system in Fig. 2~a! which has been truncated in a nonsphe
cal manner.11 Since in both systems the energy of ioni at the
center consists of afinite number of pairwiser 21 terms@see,
e.g., Eq.~2.1!#, their energy difference can be determin
from a one-by-one comparison of corresponding pair ter
Inspection of Figs. 2~a! and 2~c! reveals that the key differ-
ence between the two systems is due to the net cha
Dqi(Rc), in the system in Fig. 2~c! that arises from those
Na1Cl2 dipoles in Fig. 2~a! that were broken up upon
spherical truncation atRc . The entire net charge in Fig. 2~c!
is therefore localized near the system surface, in a she
width ubu, while the interiors of both systems are identic
and neutral.

By analogy with the convergent behavior of the charg
neutralized system in Fig. 2~a!, one might expect that the
system in Fig. 2~c! might become convergent as well if onl
the charge-neutralizing potential associated with the net
tem charge is subtracted from the total energy@see also Sec
II A and Fig. 1~b!#, i.e.,

Ei
Mad~Rc!'Ei

tot~Rc!2Ei
neutr~Rc!, ~3.1!

with Ei
tot(Rc) defined in Eq.~2.1!.

Based on the insight that the net charge in the system
Fig. 2~c! is localized near the system surface, a simple mo
can be developed to estimate its effect on ioni at the center.
Given that ubu represents the nearest-neighbor distan
ubu/Rc is always less than unity and, for longer cutoff rad
ubu/Rc!1. Instead of considering the actual charge distrib
tion within the thin surface shell of thicknessubu, we there-
fore assume that the entire net charge is locatedexactly atthe
system surface atRc . The charge-neutralizing potential fo
ion i in Fig. 2~c! is then simply given by its Coulomb inter
action with the surface charge,Dqi(Rc), i.e.,
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Ei
neutr~Rc!'

qiDqi~Rc!

Rc
, ~3.2!

where Dqi(Rc)5q(N12N2) is the net charge within the
cutoff sphere of ioni. We note that in the particular cas
considered in Figs. 2~a! and 2~c!, N1.N2 and henceEi

neutr

.0. Combining Eqs.~3.2!, ~3.1!, and~2.1!, we obtain

Ei
Mad~Rc!' (

j Þ i
~r i j ,Rc!

qiqj

r i j
2

qiDqi~Rc!

Rc
. ~3.3!

The dramatic effect of this charge neutralization on
energy of the spherically truncated system is demonstrate
Fig. 4 in which the energy of the charge-neutralized syste
is compared with that of the charged system in Fig. 1~a!.
Remarkably, even for rather short cutoff radii, Madelung e
ergies close to the correct value for rocksalt are obtai
~solid symbols!.

Equation~3.3! is a remarkable result, demonstrating th
the Madelung energy of an ion in a charged environm
@see Fig. 2~c!# can be estimated by simply subtracting t
charge-neutralization term from the energy of the char
system. However, as seen from the detailed compariso
Fig. 5, the approximate Madelung energy obtained from
~3.3! ~solid symbols; see also Fig. 4! oscillates significantly,
in a slightly damped manner, about the correct Madelu
energy of the dipolar molecular system~open symbols in
Figs. 5 and 3!; in fact, on the greatly expanded scale in F
5, the small oscillations in the potential of the dipolar syst
are barely discernible~cf. Fig. 3!.

In an attempt to analyze the origin of the pronounc
oscillations in the charge-neutralized, spherically trunca
potential in Fig. 5, we have determined the charge densit
each crystal shell, defined by dividing the charge and ene
stored in each shell by its volume, 4pRc

2Dd, whereDd is
the distance to the next shell. As seen from Fig. 6, th

FIG. 4. Rc dependence of the approximate Madelung energy determ
from Eq. ~3.3! for the spherically truncated, charge-neutralized system
Fig. 2~c! ~closed symbols!. For comparison, the total energy of the charg
system@first term in Eq.~3.3!# is also shown@open squares; same data as
Fig. 1~a!#.
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shell-by-shell charge densities~open symbols, right-hand
axis! exhibit basically the same short-period fluctuations a
the total energy of the charged system in Figs. 1~a! and 4. As
also shown in Fig. 6~left-hand axis!, thetotal charge density
of the system, defined by dividing the total charge of th
entire system by its total volume, 4pRc

3/3, exhibits the same
noisy behavior. We therefore conclude that the charge stor
in each crystal shell, or in the system as a whole out toRc ,
is not responsible for the damped oscillations in the charg
neutralized, spherically truncated potential in Fig. 5. The or
gin of these oscillations will be elucidated in Sec. IV.

In summary, based on the insight that any net charg
contained in a spherically truncated perfect crystal@Fig. 2~c!#
is localized near the system surface while the interior is ne
tral, we were able to demonstrate that the Madelung ener
of an ion in a spherically truncated environment@Fig. 2~c!#

d
nFIG. 5. Comparison of the approximate Madelung energies againstRc ob-

tained from Eq.~3.3! ~closed symbols; see also Fig. 4! with the exact ones
from Fig. 3 ~open squares!.

FIG. 6. Charge density in each crystal shell, defined by dividing the char
in the shell by its volume, 4pRc

2Dd, whereDd is the distance to the next
shell ~open symbols; right-hand axis!. Also shown is the integrated charge
density~closed symbols; left-hand axis!, defined by dividing the total charge
in the entire system by its total volume, 4pRc

3/3.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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can be estimated by simply subtracting a surface-charge
from the total energy of the charged system.

We also mention that Adams14 has pointed out that, op
erationally, an electroneutrality correction identical to E
~3.2! involving a charge distribution opposite to the total n
charge in the truncation sphere of each ion removes the
jor deficiency of the direct summation over the Coulomb p
potential. In the absence of either a formal justification o
convergence argument, Adams’ operational suggestion
gone mostly unnoticed. Unfortunately, however, his simu
tions at the time of relatively small systems led him to co
clude that the results thus obtained are strongly system-
dependent, which we were not able to confirm. Neverthel
in a 512 ion Monte-Carlo simulation of a molten salt he w
able to approximately reproduce the radial distribution fu
tion obtained from the Ewald method.14

We finally point out that, as an extra benefit, the sphe
cal truncation of the system in Fig. 2~a! has eliminated the
net dipole moment in the system@see Fig. 2~b!# and, hence,
the related dipolar correction given by Eq.~2.3!, i.e., as a
natural consequence of spherical truncation, the local e
ronment of each ion is neutral20 and dipole free.

B. Madelung potential for disordered systems from
spherical truncation

The above results, derived for a highly idealized perfe
crystal situation, are readily generalized to include dis
dered systems, such as liquids or solids with defects.
main conclusion will be that the approximation in Eq.~3.2!
that any net charge in a spherically truncated system is
catedexactly at the surface rather than distributed over
discrete surface shell of widthubu is actually much better
satisfied in highly disordered systems.

In a disordered system the energy and forces vary fr
ion to ion, as does the net charge,Dqi(Rc), within the cutoff
sphere of each ion. The double sum in the perfect-cry
expression~2.1! therefore has to be restored@see also Eq.
~1.1!#:

Etot~Rc!5
1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj

r i j
5

1

2 (
i 51

N

Ei
tot~Rc!. ~3.4!

Instead of the perfect crystal sketched in Figs. 2~a! and 2~c!
one might think of a liquid, considered in Fig. 2~a! as a
neutral, ‘‘molecular’’ system with ther 25 convergence be
havior discussed in Sec. II B, and in Fig. 2~c! as a spherically
truncated system. Since in their interiors the two systems
identical and neutral, any net charge in the spherically tr
cated liquid arises from molecules near the surface that w
broken up upon spherical truncation of the neutral, molecu
system, and Eqs.~3.2! and ~3.3! are replaced by

Etot
neutr~Rc!'

1

2 (
i 51

N

Ei
neutr~Rc!'

1

2 (
i 51

N
qiDqi~Rc!

Rc
, ~3.5!

and
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Etot
Mad~Rc!'

1

2 (
i 51

N

Ei
Mad~Rc!

'
1

2 (
i 51

N S (
j Þ i

~r i j ,Rc!

qiqj

r i j
2

qiDqi~Rc!

Rc D . ~3.6!

This general expression suggests that the total Madelung
ergy,Etot

Mad(Rc), of an arbitrarily disordered, spherically trun
cated, charged system can be estimated simply by subt
ing the charge-neutralization term associated with the lo
environment of each ion from the total energy of the charg
system.

As an illustration of Eq.~3.6!, in the following we con-
sider crystalline and molten MgO as described by
Buckingham-type interionic potentials of Sangster a
Stoneham.21 A melt was prepared by means of standa
constant-pressure molecular-dynamics simulations of
point-ion model in which the Coulomb energy, forces, a
stresses were evaluated using the full 3D Ewald meth
During gradual heating of the crystal at constant~zero! pres-
sure from zero temperature through the melting point, sn
shots of the structures of the high-temperature crystal and
liquid were stored for the following analysis using Eq.~3.6!.

The dramatic effects of charge neutralization are dem
strated in Fig. 7~a! for the high-temperature perfect cryst
and in Fig. 7~b! for the melt. Shown in each is both the tot
energy per ion in the charged system and the cha
neutralized~Madelung! energy obtained from Eq.~3.6!. Re-
markably, for both systems Madelung energies close to
fully converged Ewald values@horizontal lines in Figs. 7~a!
and 7~b!# are obtained even for rather short cutoff radii. Als
damping in the oscillations about the correct Madelung
ergy is clearly discernible in both cases.

As already mentioned, the assumption underlying E
~3.5! is that the net charge within the cutoff sphere of ea
ion is locatedexactly atthe sphere surface rather than d
cretely distributed over a width of the order of the neare
neighbor distance. The direct comparison in Fig. 8 of
approximate Madelung energies thus obtained for the z
and high-temperature crystals and for the melt reveals
the magnitude of the damping in the oscillations about
correct Madelung energy increases with the increasing
gree of structural disorder, indicating that this assumption
better satisfied the more disordered the system is. This
havior originates from the thermal movements of the io
which have the effect of smearing out the discrete distri
tion of the surface ions. The net effect is a smaller net cha
within the truncation volume that has to be neutralized; al
while in the high-temperature crystal some of the directio
and radial discreteness in this distribution remains, in
melt it is almost completely washed out.

In Fig. 9 the charge-neutralizing energies from Figs. 7~a!
and 7~b! are compared directly; these energies are dire
related to the surface charges in the spherically trunca
system. Compared to the zero-temperature perfect-cry
data in Fig. 4, due to the ion mobility at higher temperatu
the charge-neutralization energies for the high-tempera
solid and the melt exhibit a rather smooth oscillatory dep
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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dence onRc , and with a greatly reduced magnitude. Th
oscillatory behavior arises from long-range charge order
as seen, for example, in the charge–charge correla
function.6 It is interesting to note the slightly different fre
quencies of the charge oscillations in the melt and in
high-temperature crystal, suggesting qualitatively differ
charge-ordering effects in the two systems.6

In summary, the above results demonstrate that, even
highly disordered systems, the problems in evaluating
total energy in Eq.~3.4! by directr 21 lattice summation with
spherical truncation arise from the net charge in the sys
for some arbitrary value ofRc . Moreover, the oscillations in
the total~non-neutralized! energy of a spherically truncate
system at finite temperature appear to be a physical e
associated with charge ordering in the real system.

Finally, we consider two simple types of interfacial sy
tems, namely, free surfaces and grain boundaries~GBs!.
Compared to the two, more or less homogeneously di
deredbulk systems considered above, interfacial systems

FIG. 7. Comparison between the charged and charge-neutralized energ
~a! the high-temperature perfect crystal and~b! the melt as a function ofRc .
Both systems were prepared by constant-pressure molecular-dynamics
lations using the full Ewald sum.
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physically and computationally more complex because
structural disorder is so highly localized at the interfac
The key task is to determine the Gibbsian excess energy
unit area from the simulation of two related systems, on
perfect-crystal reference system and the other a bicry
containing the interface, but otherwise identical to the ref
ence crystal~i.e., they contain the same number of ions,
the same temperature and pressure!. The computational chal-
lenge is therefore to extract a relatively small~intensive! ex-
cess energy per unit area from the subtraction of two la
~extensive! system energies.

For simplicity we limit ourselves to zero temperatur
The two systems we choose are the~100! free surface of
MgO and the symmetric tilt GB~STGB! on the MgO~210!
plane; both systems were the subject of ear
investigations22–24involving static lattice relaxation and Pa
ry’s modification of the 3D Ewald sum25 that permits con-

s of

u-

FIG. 8. Comparison of the charge-neutralized energies of the h
temperature perfect crystal and the melt@see Figs. 7~a! and 7~b!# with that of
the zero-temperature perfect crystal in Fig. 5.

FIG. 9. Direct comparison of the surface-charge neutralization energie
Figs. 7~a! and 7~b!.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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sideration of a slab geometry. For our present purpose, t
relaxed zero-temperature structures were determined
means of the potentials of Sangster and Stoneham21 and a
point-ion model in which the Coulomb energy, forces, a
stresses were evaluated using Parry’s slab method.25 Using
these as input structures, the charge-neutralized Coulomb
ergies were subsequently evaluated using Eq.~3.6!.

To demonstrate the subtraction of two large, rather si
lar sets of energies to determine the interface energy, in
free-surface results in Fig. 10~a! we have included two dis
tinct sets of data: first, the total Madelung energy per ion~in
units of q2/a! in the system containing the surface~squares!
and the perfect-crystal reference system~crosses!; second,
the Coulombic contribution to the total Gibbsian excess
ergy per unit area~i.e., the interface energy! in units of
q2/a3, obtained from the first set; by contrast, the GB resu

FIG. 10. Interface energy~i.e., Gibbsian excess energy per unit area! for ~a!
the ~100! free surface and~b! the ~210! symmetric tilt boundary in MgO~in
units of q2/a3!. To demonstrate the subtraction of two large numbers n
essary to obtain these excess energies, in~a! the total Madelung energy pe
ion ~in units ofq2/a! in the system containing the surface~squares! and the
perfect-crystal reference system~crosses! are shown also. The dashed hor
zontal line indicates the interface energy obtained via Parry’s slab versio
the Ewald sum~Ref. 25!.
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in Fig. 10~b! show only the interface energy.
The somewhat disappointing result in Figs. 10~a! and

10~b! is that the excess energy oscillates dramatically ab
the correct value obtained by means of Parry’s form
~dashed horizontal line!; in fact, in both cases we are unab
to determine even the correct sign of the Coulombic con
bution to the interface energy. This numerical, second-or
effect arises from the fact that the underlying uncertainties
the Madelung energies per ion in the system are of roug
the same magnitude as the excess energy per ion in th
terface. In Sec. V A we will show how the effects of dam
ing imposed on the Coulomb pair potential enable realis
simulations of interfacial systems by direct lattice summ
tion.

C. Shifted Coulomb pair potential

For the charge-neutralized Coulomb potential to be
able, for example, in lattice-statics or molecular-dynam
simulations, the relevant expressions for the forces
stresses must be derived from Eq.~3.6!. Moreover, a method
for shifting the potential and its derivatives has to be dev
oped so as to avoid any discontinuities in the energy, forc
and stresses at the surface of the truncation sphere.

Prior to tackling these problems, however, we develo
more formal theoretical understanding of the charg
neutralization term in Eqs.~3.5! and~3.6!. As is readily seen,
the latter can be rewritten as follows:

Etot
neutr~Rc!'

1

2 (
i 51

N
qiDqi~Rc!

Rc
5

1

2 (
i 51

N

(
j 51

~r i j ,Rc!

N
qiqj

Rc
, ~3.7!

because the net charge within the spherical truncation s
of any ion i is given by

Dqi~Rc!5 (
j 51

~r i j ,Rc!

N

qj . ~3.8!

We note that the term forj 5 i needs to be included here s
that the true total charge in the spherically truncated volu
is obtained; the latter obviously includes the ion at the cen
of the truncation sphere. Inserting Eq.~3.7! into ~3.6!, we
obtain

Etot
Mad~Rc!5Etot~Rc!2Etot

neutr~Rc!

'
1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj

r i j
2

1

2 (
i 51

N

(
j 51

~r i j ,Rc!

N
qiqj

Rc
, ~3.9!

or, more explicitly,

Etot
Mad~Rc!5

1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

Vsh
C ~r i j !2

1

2Rc
(
i 51

N

qi
2, ~3.10!

where we have introduced the ‘‘shifted’’ Coulomb pair p
tential,

-

of
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Vsh
C ~r i j !5qiqj S 1

r i j
2

1

Rc
D ~r i j ,Rc!,

Vsh
C ~r i j !50 ~r i j .Rc!. ~3.11!

This interesting result reveals that the physical conc
of charge neutralization at the system surface and the op
tional concept of shifting of the pair potential are equivale
As first pointed out by Adams,14 the charge-neutralized en
ergy of the spherically truncated system can therefore
written in terms of a shifted pair potential which smooth
approaches zero atr 5Rc . The additive constant in Eq
~3.10!, which involves a sum over the squares of the char
in the system, is a self term for each ion that is unaffected
the pair interactions between the ions and merely adde
the total Madelung energy of the system.

In view of Eqs.~3.10! and ~3.11!, we propose the fol-
lowing interpretation of the manner in which the Madelu
energy can be extracted from the total energy of the sph
cally truncated, charged system. For every chargeqj at dis-
tancer i j from some central ioni, an image charge of oppo
site sign is projected onto the truncation sphere atRc , such
that ion i effectively interacts only with neutral pairs~see
Fig. 11!. The image-charge potential,2qiqj /Rc , is then
added to the unshifted Coulomb potential,qiqj /r i j , so as to
achieve charge neutralization in the energy and all its der
tives; this results in a smooth truncation of the pair poten
at Rc . As a consequence, the interactions of the central
with the ions atRc ~which are responsible for the net char
in the system! and with the entire material beyondRc vanish,
thus effectively delineating a neutral, spherical environm
for each ion from which its Madelung energy can be e
tracted.

As written, the neutralizing potential in Eqs.~3.7!, ~3.9!,
and~3.10! is a constant for any given value ofRc . Formally,
the ions on the surface of the truncation sphere would th
fore have no effect whatsoever on the forces and stresse
the ion at the center, a result that is unphysical. Clearly,
surface ions exert a~positive or negative! pressure on the
system and give rise to forces, effects that must be taken
account.

FIG. 11. An interpretation of Eqs.~3.10! and~3.11! is that for every charge
qj at distancer i j from some central ioni, an image charge of opposite sig
is projected onto the truncation sphere atRc , such that ioni effectively
interacts only with neutral pairs.
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A slight modification of Eq.~3.7! readily permits incor-
poration of these effects. By introducing ther i j→Rc limit
into Eq. ~3.7!, according to

Etot
neutr' lim

r i j→Rc
H 1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj

r i j J 1
1

2Rc
(
i 51

N

qi
2, ~3.12!

and evaluating all derivativesprior to taking the limit, all
effects due to the surface charge are fully incorporated w
rendering the energy in Eq.~3.10! unchanged. The rational
for leaving the self term out of the limit is that an ion do
not exert a force nor a pressure on itself; this constant t
will thus not contribute to the derivatives of Eq.~3.12!.

The shifted pair potential in Eq.~3.11! is hence replaced
by

Vsh
C ~r i j !5

qiqj

r i j
2 lim

r i j→Rc

H qiqj

r i j
J , ~3.13!

while Eq. ~3.10! remains formally unchanged. In analogy
Eq. ~3.3! we define the Madelung energy of ioni as

Ei
Mad~Rc!5 (

j Þ i
~r i j ,Rc!

Vsh
C ~r i j !. ~3.14!

The starting equation~3.10! for evaluating the forces and
stresses may then be rewritten as follows:

Etot
Mad~Rc!'

1

2 (
i 51

N

Ei
Mad~Rc!2

1

2Rc
(
i 51

N

qi
2. ~3.15!

The a(5x, y, z) component of the force on ioni is defined
in the usual manner by

Fia~Rc!52
]Ei

Mad

]r ia
52

]

]r ia F (
j Þ i

~r i j ,Rc!

Vsh
C ~r i j !G

52 (
j Þ i

~r i j ,Rc!

dVsh
C ~r i j !

dri j

]r i j

]r ia
. ~3.16!

With @see Eq.~3.13!#

dVsh
C ~r i j !

dri j
52qiqj S 1

r i j
2 2

1

Rc
2D , ~3.17!

Eq. ~3.16! can be written as follows:

Fia~Rc!5 (
j Þ i

~r i j ,Rc!

f i j a , ~3.18!

where

f i j a5qiqjS 1

r i j
2

r i j a

r i j
2

1

Rc
2

r i j a

Rc
U

r i j 5Rc

D ~3.19!

is the pair force on ioni due to its interaction with ionj, and
r i j a5r j a2r ia .

For a pair potential, the virial stress tensor is given b26
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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sab~Rc!5
1

6V (
i 51

N

(
j Þ i

~r i j ,Rc!

r i j a f i j b , ~3.20!

whereV5NV is the system volume andV is the average
volume per ion. Combining Eqs.~3.19! and ~3.20!, we thus
obtain

sab~Rc!5
1

6V (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj

3S 1

r i j
2

r i j ar i j b

r i j
2

1

Rc
2

r i j ar i j b

Rc
U

r i j 5Rc

D . ~3.21!

The manner in which the truncation term in both t
forces@Eq. ~3.19!# and stresses@Eq. ~3.21!# is actually evalu-
ated atRc is illustrated in Fig. 11. For example, in the case
the stresses, for eachi – j pair the angular term associate
with the truncation term, (r i j ar i j b /Rc

2) r i j 5Rc
, is identical to

the angular term,r i j ar i j b /r i j
2 , associated with the corre

sponding unshiftedi – j interaction. This can be interprete
as having added an image charge,2qj , at Rc which com-
pensates the chargeqj at r i j such that ioni effectively inter-
acts only with neutral pairs. The image-charge potent
2qiqj /Rc , is then added to the unshifted Coulomb pote
tial, qiqj /r i j , so as to achieve charge neutralization in t
energy and all its derivatives.

For acubiccrystal at zero temperature, Eq.~3.21! can be
simplified since, for every crystal shell with radiusr s con-
taining n(r s) ions, one can write

(
j 51

n~r s!

r i j ar i j b5dab

1

3
r s

2, ~3.22!

wheredab is the Kronecker delta. Inserting Eqs.~3.22! and
~3.14! into Eq. ~3.21! and substituting forVsh

C , after minor
manipulation we obtain

sab~Rc!5
dab

6V

1

3 (
j Þ i

~r i j ,Rc!

Vsh
C ~r i j !5

dab

6V

1

3
Ei

Mad~Rc!. ~3.23!

Consequently, in units of (6V)21, the pressure is identica
to one third of the Madelung energy of the perfect-crys
ions, with an identical convergence behavior.

It is interesting to note that the first derivative ofVsh
C (r i j )

in Eq. ~3.17!, and hence the associated forces and stress
Eqs. ~3.19! and ~3.21!, are smoothly shifted to zero at th
cutoff radius, as is the pair potential in Eq.~3.19! itself.
Naturally, all higher derivatives will therefore be truncated
the same manner. An interesting feature of this type of tr
cation ~by an r i j -independent, constant shift! is that it does
not alter the shape of the original, unshifted pair potential
the functional forms of its derivatives. Specifically in th
Coulomb case, this implies that ther 2(n11) functional form
of thenth derivative of the original Coulomb pair potential
unaffected by the truncation.
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D. Discussion

Based on the concept of charge neutralization, Eq.~3.11!
describes a pair potential that smoothly approaches zer
the surface of the spherically truncated volume because
charge within this sphere is compensated by an equal
opposite surface charge atRc ~Fig. 11!. Interestingly, this is
very similar to the classic problem of determining the pote
tial at the center of a conducting, grounded sphere due to
presence of a point charge,q, at some pointr5r n̂ within the
sphere~i.e., r ,Rc!; heren̂ is the radial unit vector.17 Since
the sphere is conducting and grounded, the electrostatic
tential on its surface must be zero, i.e.,F(Rc)50. This con-
dition can be guaranteed by placing a fictitious image cha
q852qRc /r , outside the sphere atr 85(Rc

2/r )n̂. A little
analysis17 then shows that the net induced charge on
conducting sphere is precisely2q, i.e., it exactly compen-
sates for the charge inside the sphere, and it is distribute
the conducting shell in a region centered around the poin
Rcn̂. The potential at the origin is then simply the sum of t
contributions due to the real charge and its image. If there
a number of charges within the spherical shell, the poten
at the origin can be simply calculated by linear superposit
over the contributions from the charges and their respec
images. Thus, in analogy with the charge-neutralizat
method, the conducting shell also neutralizes the charges
lie within it.

This image-charge method is related to Friedma
reaction-field method27 in which the charges within a spher
cal shell of radiusRc are embedded in a dielectric medium
dielectric constant,e. In the reaction-field method the imag
of the chargeq at r5r n̂ is placedoutside the truncation
sphere atr 85(Rc

2/r )n̂ and assigned a chargeq852(e
21)/(e11)qRc /r . In spite of these similarities, the tw
methods differ qualitatively in three key aspects. First,
physics of the reaction-field and the charge-neutralizat
methods are different. In the reaction-field method, the
age charges describe the response of the embedding di
tric medium ~i.e., beyondRc!; in the charge-neutralization
method the charges placed on the surface compensate
excess charge withinRc . Second, fore→` the explicit r
dependence inq8 leads to a functional form for the forc
different from that in Eq.~3.19!, although it also goes to zer
at Rc . Third, for finite e the force on an ion atRc together
with that on its image is finite, whereas beyondRc the po-
tential, and hence the force, is by definition zero; for finitee
the reaction-field method does therefore not provide a s
able basis for a dynamical computational scheme.

The properties of the Coulomb pair potential in E
~3.13! suggest a general truncation procedure applicable
all types of pair potentials. That is, by defining a shift
potential, Vsh(r i j ), in terms of the unshifted potentia
V(r i j ), by

Vsh~r i j !5V~r i j !2 lim
r i j→Rc

$V~r i j !%, ~3.24!

one assures not only that atRc all derivatives ofVsh(r i j )
approach zero smoothly but also that the functional form
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the unshifted potential and all its derivatives are preserv
In that sense, the truncation method based on Eq.~3.24! is as
unintrusive as one might imagine.

In molecular-dynamics simulations, a system who
forces are derived from Eq.~3.24! should, at least in prin-
ciple, not conserve energy because the energy does not
resent quite the correct integral of the forces; when integ
ing, for example, a ‘‘shifted-force’’ potential,26 a term
proportional tor i j appears in the energy. Although the e
ergy and its derivatives are therefore not entirely consis
with one another, our shifting method has the advantage
the actual values for the energy, forces, etc. thus obtained
as close as desirable to the correct ones, i.e., to those
tained for the unshifted pair potential~the exact solution!. As
illustrated in Sec. VII, however, in practice energy is co
served rather well, permitting the use of the same integra
time step as in the full Ewald method.

IV. CONVERGENCE ANALYSIS

According to Fig. 5, theRc dependent Madelung energ
extracted from the spherically truncated, charge-neutrali
environments of the ions@see Fig. 2~c! # differs systemati-
cally from that obtained from the molecular approach11 @see
Fig. 2~a!#. The likely cause for these differences is th
spherical truncation breaks up the molecules nearRc , thus
destroying ther 25 interaction of an ion with a neutral, mo
lecular shell@see Eq.~2.4!#. As also noted above, the osci
lations in the Madelung energy extracted from spheri
truncation are of a different nature than the more or l
random, much shorter-period fluctuations in the charge d
sity of the system~see, e.g., Figs. 5 and 6!. Also, as clearly
seen in Fig. 8, the oscillations in the Madelung energy ab
its fully converged value are weakly damped, with an amp
tude roughly decreasing proportional to 1/Rc . In the follow-
ing we will elucidate the origin of this behavior by using a
analysis based on the charge distribution function,Q(r ).

A. Formal analysis

In ionic systems two structural measures are equally u
ful, the radial distribution function,G(r ), and the radial
charge distribution function,Q(r ). For simplicity, here we
limit ourselves to a binary system, with chargesqi56q. It
is well known that for such a system

G~r !5G11~r !1G22~r !12G12~r !, ~4.1!

Q~r !5G11~r !1G22~r !22G12~r !, ~4.2!

where theGab(r ) (a,b51,2) are partial radial distribu-
tion functions for the different combinations of the two sp
cies. Throughout, we use the normalization that forr→`,
G(r ) approaches the average number density of the sys
the dimensions of bothG(r ) and Q(r ) are therefore
1/volume. With this definition ofQ(r ), the average charg
between distancesr andr 1dr from the center of some ioni
is given byqi4pr 2Q(r )dr.

We first consider the convergence behavior of
chargedsystem@see, e.g., Fig. 2~c!#. With the above defini-
tion of Q(r ), the average Coulomb energy per ion may
written as follows@see also Eq.~3.4!#:
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Etot~Rc!/N54pq2E
0

Rc
drrQ~r !. ~4.3!

The radial charge distribution function can be represented
its Fourier transform as28

Q~r !5
1

2p2r E0

`

dkk@Q~k!21#sin~rk !, ~4.4!

with the spherically averaged charge structure factor gi
by

Q~k!511
4p

k E
0

`

drrQ~r !sin~rk !. ~4.5!

Combining Eqs.~4.3! and ~4.4!, we obtain

Etot~Rc!/N5
2

p
q2E

0

Rc
drE

0

`

dkk@Q~k!21#sin~rk !; ~4.6!

integration overr yields

Etot~Rc!/N5
2

p
q2E

0

`

dk@Q~k!21#

2
2

p
q2E

0

`

dk@Q~k!21#cos~kRc!. ~4.7!

This expression reveals that the energy of the char
system consist of two terms, anRc independent term gov
erned solely by the charge distribution in the system and
Rc dependent term. The actualRc variation of the second
term can only be established assuming a specific form
Q(k). For example, for a completely uncorrelated syste
Q(k)[1, i.e., the second term vanishes. On the other ha
for a perfect crystal latticeQ(k) consists of a descrete set o
delta functions@see Eq.~4.22! below#; the second term is
then simply a sum of nonconvergent oscillatory terms
finding that is consistent with our numerical results for t
perfect NaCl crystal shown in the doubly logarithmic plot
Fig. 12 ~open symbols!.

The fact that in a perfect crystal lattice the oscillatio
do not die out means thatEtot(Rc)/N does not converge. In
deed, in a little known paper Emersleben29 proved half a
century ago that in three dimensions the spherically tr
cated NaCl lattice sum does not converge. However, B
wein et al.30 showed more recently that, by contrast, in
two-dimensional ~2D! square lattice spherical truncatio
converges and that the lack of convergence in the 3D N
lattice is intimately connected with the nature of the sphe
cal truncation; they also showed thatcubic truncation con-
verges in both two and three dimensions.30 This greater ro-
bustness of cubic truncation in the NaCl lattice is proba
due to the fact that the crystallographic unit cell and, hen
any system thus generated, is always charge neutral.

Next we consider the convergence behavior of
charge-neutralizedsystem. To determine the average Mad
lung energy per ion16 @see Eq.~3.6!#,

Etot
Mad~Rc!/N5Etot~Rc!/N2

1

N (
i 51

N
qiDqi~Rc!

Rc
, ~4.8!
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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we need to calculate the average charge within the cu
sphere. With the above definition ofQ(r ), this charge is
given by

Dqi~Rc!5qi14pqiE
0

Rc
drr 2Q~r !, ~4.9!

where qi accounts for the central charge not included
Q(r ). Inserting the Fourier representation ofQ(r ) given by
Eq. ~4.4!, integrating by parts overr, dividing by Rc , and
using the fact that the integral of sin(x)/x from zero to infinity
is equal top/2, we obtain

Dqi~Rc!52
2Rcqi

p E
0

`

dk@Q~k!21#cos~kRc!

1
2qi

p E
0

`

dkQ~k!
sin~kRc!

k
. ~4.10!

According to this result, in a perfect crystal lattice@with
Q(k) given by Eq.~4.22!# the Rc dependence ofDqi(Rc) is
dominated by the first term, revealing that the amplitude
the oscillations inDqi(Rc) increaseslinearly with Rc . The
charge-neutralizing energy,Dqi(Rc)/Rc , then becomes
equal and opposite to the undamped, oscillatory term in
energy of the spherically truncated,chargedNaCl lattice@see
also Eq.~4.7!#. For a perfect crystal lattice the charge ne
tralization in Eq.~4.8! therefore completely eliminates th
undamped oscillations. This damping effect is clearly visi
in Fig. 12 ~closed symbols!, showing that the solid line with
a slope of21 @see Eq.~4.23! below# represents an envelop

for the damped oscillations inuEMad(Rc)2EMad(`)u.
Finally, insertion of Eqs.~4.10! and ~4.7! into Eq. ~4.8!

yields the following general expression for the energy of
charge-neutralized system:

FIG. 12. Comparison of the spherically truncated, charged and cha
neutralized Coulomb energies for the NaCl structure at zero tempera
~see also Fig. 4!. Open symbols: Log–log plot of the absolute valu
uEtot(Rc)2Etot

Mad(Rc→`)u/N, of the difference between the total energy
the chargedsystem and the fully converged Madelung energy,Etot

Mad(`)
523.495 116q2/a @see Eq.~4.13!#. Closed symbols: Same plot for th
charge-neutralizedenergy,uEtot

Mad(Rc)2Etot
Mad(Rc→`)u/N @see Eq.~4.14!#.

The solid line, with a slope of21, represents 1/Rc .
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Etot
Mad~Rc!/N5

2

p
q2E

0

`

dk@Q~k!21#

2
2

pRc
q2E

0

`

dkQ~k!
sin~kRc!

k
. ~4.11!

Similar to Eq. ~4.7!, the energy of the charge-neutralize
system therefore consist of two terms as well, anRc inde-
pendent term@identical to the first term in Eq.~4.7!# and a
second term, however with a modifiedRc dependence. Due
to the 1/Rc prefactor, this term is responsible for the conve
gence of the energy of the charge-neutralized system. In
even without any charge ordering@i.e., Q(k)[1#, this term
converges monotonically as 1/Rc . Incorporation of charge
ordering can be expected to speed this convergence sig
cantly since the charges tend to screen their potential
leave the net charge within the truncation sphere as neutr
possible, a fact borne out by all our simulations of the crys
and the melt~see Fig. 8!.

The Rc-independent constant in Eqs.~4.7! and ~4.11! is
readily seen to be identical to the fully converged Madelu
energy per ion,Etot

Mad(Rc→`)/N. Inserting Eq. ~4.5! for
Q(k) and evaluating the integral overk, the constant term
becomes

Etot
Mad~Rc→`!/N5

2

p
q2E

0

`

dk@Q~k!21#

54pq2E
0

`

drrQ~r !. ~4.12!

Comparison with Eq.~4.3! reveals that this term is identica
to Etot(Rc→`)/N which, by definition, represents the avera
Madelung energy per ion,Etot

Mad(Rc→`)/N, given by the
conditionally convergent infinite sum in Eq.~1.1!. That the
energies of both the charged and the charge-neutralized
tems oscillate about the same Madelung energy is consis
with all the simulation results presented in Sec. III~see Figs.
4, 5, and 7–10!. Our principal results, Eqs.~4.7! and~4.11!,
may therefore be summarized as follows:

Etot~Rc!/N5Etot
Mad~Rc→`!/N2

2q2

p E
0

`

dk@Q~k!21#

3cos~kRc!, ~4.13!

Etot
Mad~Rc!/N5Etot

Mad~Rc→`!/N

2
2q2

pRc
E

0

`

dkQ~k!
sin~kRc!

k
. ~4.14!

In summary, by contrast with the nonconvergent ene
of the charged system in Eq.~4.13!, the Madelung energy o
the charge-neutralized system in Eq.~4.14! converges at leas
as 1/Rc . The factor of 1/k under the integral in Eq.~4.14!
has the effect of reducing the contributions from the largk
vectors such that the lowestk vectors for whichQ(k) has a
significant value dominate.
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B. Discussion

It is interesting to compare the convergence behavio
the spherically truncated, charge-neutralized system in
~4.14! with the Rc

22 convergence of the molecular syste
considered in Sec. II B. According to Eq.~2.5!, this requires
determination of the interaction energy of each ion with
the ions outside the cutoff sphere. Using the condition
charge neutrality, it can be shown that this energy is eq
and opposite to the damped, oscillatory term in Eq.~4.14!,
i.e., Eq. ~2.5! yields DEMad(Rc);1/Rc . The charge-
neutralized potential in Eq.~4.14! therefore converges les
fast than that for the molecular system, a difference aris
from the different manners in which the central ion in Fig
2~a! and 2~c! is surrounded. This comparison demonstra
how the approximate nature of Eq.~3.2!, placing the charge-
neutralizing ions on the truncation sphere rather than at t
correct crystallographic positions, affects the convergenc

For a numerical comparison of Eqs.~4.13! and ~4.14!
with our simulation results,Q(k) has to be determined ex
plicitly for any given structure. In principle,Q(k) can be
obtained from Eq.~4.5!, i.e., by integrating overQ(r ) asso-
ciated with the system. Unfortunately, for crystalline syste
this approach is not straightforward because forr→`, Q(r )
does not approach zero due to the presence of long-ra
order. Instead, we use the relationship28

Q~k!5^Q~k!& uku5E
uku5k

dsQ~k!/4pk2, ~4.15!

where the angular brackets indicate an angular average
a sphere,s, at constantuku5k. As a consequence of thi
definition, for any functionf (k),

4pE dkk2f ~k!Q~k!5E d3k f ~k!Q~k!. ~4.16!

The charge structure factor,Q(k), in Eq. ~4.15! is defined as
the square of the Fourier transform of the charge dens
s~r !, i.e.,Q(k)5s(k)s* „k…. By definition,s~k! is given by

s~k!5
1

qN1/2E d3rs~r !exp@ i ~k–r !#

5
1

qN1/2 (
j 51

N

qj exp@ i ~k–r j !#, ~4.17!

wheres(r )5S jqjd(r2r j ) is the charge density@to be dis-
tinguished from the atomic density,r(r )5S jd(r2r j )#. The
normalization factor, 1/qN21/2, was introduced here in orde
for Q(k) to be consistent with the definition ofQ(k) given
by Eq.~4.5!. The charge structure factorQ(k) then becomes
@noting that, sinces~r ! is real,s* „k…5s(2k)#

Q~k!5s~k!s* „k…

5s~k!s~2k!

5
1

Nq2 E E d3r d3r 8s~r !s~r 8!exp@ ik–~r2r 8!#,

~4.18!
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i.e., Q(k) is the Fourier transform of the two-point, charge
charge correlation function,s(r )s(r 8), normalized by the
number of ions andq2; its spherical average is therefore th
Fourier transform of the spherical average ofs(r )s(r 8), i.e.,
^s(r )s(r 8)& ur2r8u5^Q(r2r 8)& ur2r8u5Q(r 2r 8) @see Eq.
~4.5!#.

For a perfect crystal lattice,Q(k) defined in Eq.~4.18!
vanishes for all k vectors except those representin
reciprocal-space vectors associated withcharged lattice
planes ~hkl!, for which there is constructive interferenc
therefore us(khkl)u5N1/2 and henceQ(khkl)5N. For ex-
ample, in the rocksalt structure, the charged lattice planes
those for which all three Miller indices are odd. The fir
peak inQ(k) therefore appears atuk111u52p/d(111) corre-
sponding to the most widely spacedchargedplanes in this
structure. For a finite-sized, periodically repeated NaCl cr
tal we may therefore write

Q~k!5N (
~hkl!

odd

dk2khkl
, ~4.19!

wheredk2khkl
is the Kronecker delta. For an infinite syste

(N→`), the Kronecker function is replaced by the prope
normalized three-dimensional Dirac delta function,

Q~k!5r~2p!3 (
~hkl!

odd

d~k2khkl!, ~4.20!

wherer is the atomic density. Inserting Eq.~4.20! into Eq.
~4.15!, we finally obtain the desired angular average
Q(k):

Q~k!5r~2p!3 (
~hkl!

odd

^d~k2khkl!& uku

5r~2p!3 (
~hkl!

odd
d~k2ukhklu!

4pk2 . ~4.21!

By introducing multiplicity factors,Mhkl , which simply
count the number of distinct crystallographic directions b
longing to a given$hkl% family, and substitutingr58/a3 for
the NaCl lattice,Q(k) can be finally written as

Q~k!5
16p2

a3 (
$hkl%

odd

Mhkl

d~k2ukhklu!
k2 . ~4.22!

This expression enables us to explicitly determine
oscillatory Madelung energy for the perfect NaCl crystal a
function of Rc . Inserting Eq.~4.22! into Eq. ~4.14!, we ob-
tain

Etot
Mad~Rc!/N5Etot

Mad~Rc→`!/N2
32pq2

Rca
3

3 (
$hkl%

odd
Mhkl

ukhklu3
sin~ ukhkluRc!. ~4.23!

Because of theukhklu23 term, the leading contribution to th
$hkl% sum arises from the$111% planes that represent the mo
widely spaced charged planes in the rocksalt structure. W
M11158, and uk111u52p/d(111)52p)/a, Eq. ~4.23!
yields
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Etot
Mad~Rc!/N'E111

Mad~Rc!/N

5Etot
Mad~Rc→`!/N2

32)q2

9p2Rc
sin~2p)Rc /a!.

~4.24!

Figure 13 illustrates that the oscillations in the Madelu
energies obtained via spherical truncation of the NaCl lat
with charge neutralization@see Fig. 5 and Eq.~3.3!# are,
indeed, reasonably well approximated by the~111! contribu-
tion alone given by Eq.~4.24!. The differences betwee
E111

Mad(Rc)/N and the numerical data in Fig. 13 arise from t
higher-ukhklu contributions. We have verified that inclusio
in Eq. ~4.23! of the five densest charged planes in the Na
lattice @~111!, ~311!, ~331!, ~333! and ~511!# represents the
numerical data much better.

In the high-temperature perfect crystal the contribut
from the lowestk value,uk111u, in Eq. ~4.23! can be expected
to dominate even more than in the zero-temperature struc
because the peaks inQ(k) are damped by the Debye–Walle
factor, Q(k)5Q(k,T50)exp(2k2^u2&/3), where^u2& is the
average vibrational amplitude of the ions about their perfe
crystal equilibrium lattice sites.28 As a consequence, the o
cillations in the high-temperature data are much smoo
and of smaller amplitude than the zero-temperature res
~see Fig. 8!, although the 1/Rc damping is the same in th
two cases.

By contrast with either the zero or the high-temperat
crystal, for the melt the oscillations not only in the Madelu
energy in Eq.~4.14! but even in the energy of the charge
system given by Eq.~4.13! decay with increasingRc @see
also Fig. 7~b!#. This behavior originates from the fact tha
because the melt lacks long-range order, itsQ(k) does not
exhibit the crystalline delta-function peaks. Instead, the
feature inQ(k) is a broad maximum at ak;uk111u associated
with the short-range order in the melt; also, for largerk val-
ues,Q(k)→1.31 The Fourier transform ofQ(k)21 in Eq.
~4.13! is therefore localized in real space, i.e., it decays w

FIG. 13. Comparison of the Madelung energies,E111
Mad(Rc)/N, for the NaCl

lattice obtained analytically from the approximate expression~4.24! with
those determined directly via spherically truncated 1/r summation with
charge neutralization@see Fig. 5 and Eq.~3.3!#.
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increasingRc . For the melt the effect of charge neutraliz
tion @which gives rise to the 1/Rc prefactor in Eq.~4.14!# is
therefore merely to speed up the convergence in the Ma
lung energy.

Based on Eq.~4.14! we can also, at least qualitatively
understand the lack of convergence of the surface and
energies in Figs. 10~a! and 10~b!. We start with the definition
of the interface energy,g, as the Gibbsian excess energy p
unit area,A,

g5
1

A (
n51

nmax

@En
Mad~Rc!2Epc

Mad~Rc!#, ~4.25!

whereEn
Mad(Rc) is the charge-neutralized energy of all th

Np ions located in a given planen near the~hkl! interface
plane while Epc

Mad(Rc) is the corresponding perfect-cryst
reference energy. The sum includes all lattice planes wit
the distanceRc from the interface, i.e.,nmax5Rc /d(hkl),
whered(hkl) is the interplanar spacing.

According to Eq.~4.14!, En
Mad(Rc) is given by

En
Mad~Rc!/Np5En

Mad~Rc→`!/Np

2
2q2

pRc
E

0

`

dkQn~k!
sin~kRc!

k
, ~4.26!

where, in analogy to Eq.~4.5!, Qn(k) is defined as the Fou
rier transform of the radial charge distribution functio
Qn(r ), averaged over theNp ions in planen. Both En

Mad(Rc)
and the perfect-crystal energies in Eq.~4.25! therefore con-
verge in the same oscillatory manner, and have an amplit
that decreases as 1/Rc . However, because the total numb
of terms in Eq.~4.25!, nmax5Rc /d(hkl), increaseslinearly
with Rc , the effective damping ing is greatly reduced. In
fact if one were to assume that the energy differences in
~4.25! are entirely independent ofn, the oscillations in the
resulting expression forg would become entirely undamped
That this assumption is actually not too unreasonable is s
from our simulation results in Figs. 10~a! and 10~b! that re-
veal an approximately constant amplitude of the oscillatio
in g.

V. EFFECTS OF DAMPING THE PAIR POTENTIAL

In Sec. IV the theoretical foundations were develop
based on which the true Madelung potential16 of the ions can
be extracted simply by neutralizing the total energy of
spherically truncated, charged system. Unfortunately, ho
ever, due to its rather slow, 1/Rc oscillatory decay the poten
tial thus obtained suffers from practical limitations; mor
over, in some cases, particularly in the determination
interfacial excess energies, the oscillations are practically
damped, rendering the method virtually useless for pract
applications. Clearly, the numerical accuracy of the meth
needs to be improved to make it computationally more
bust.

At this juncture, we have essentially two choices. O
option would be to improve the model for deriving th
Madelung potential from theactual charge distribution
within the spherically truncated volume. For example, o
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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might think of compensating not only for the net charge n
the surface of the spherically truncated system but also
the higher moments in the charge distribution by subtrac
the relevant expressions from the total energy. This appro
is qualitatively similar to the fast-multipole methods dev
oped in recent years for the simulation of Coulomb
systems.8–10 However, the main advantage of the above a
proach, namely, the conceptual and computational simpli
associated with the assumedd-function distribution of the
net charge in the system on the system surface, would
lost. In our view, giving up this simplicity in favor of having
to consider the actual excess-charge distribution within
truncation sphere would be a conceptual step backwards
cause it would refocus the computational problem on
details of how in each case the ions are surrounded for
purpose of extracting their true Madelung energy. We w
therefore not pursue this option here.

Our second option, conceptually less ambitious but
erationally extremely useful, is to damp the Coulombpair
potential in Eq.~3.13! directly so as to more quickly flatte
out the oscillations with increasingRc in the resulting Made-
lung energy in Eqs.~3.6! and~4.14!. Our analysis in Sec. IV
has demonstrated that the effect of neutralizing the sur
charge in the spherically truncated system is equivalen
symmetrically dampingthe Rc-dependent Madelung energ
of each ion. These results offer hope that damping the
derlying pair potential in Eq.~3.13! directly may be equally
successful in that damping will not only significantly redu
the value ofRc required to achieve satisfactory numeric
precision in actual simulations but also render the value
the fully converged Madelung energy essentially unchan
from its undamped value forRc→`. While preserving the
conceptual and practical simplicity of spherical truncati
with surface-charge neutralization, the challenge with t
approach is to establish the theoretical foundations that
mit the systematic errors introduced by damping the p
potential to be assessed for any particular damping funct
In the following we demonstrate that the Ewald method p
vides a theoretical framework for exactly this type of a
proach.

A. Damped, charge-neutralized Coulomb pair
potential

While, in principle, we could choose any dampin
function,32 in the following we only consider damping vi
the complementary error function. Because of its close c
nection with the Ewald method and the ease by which
necessary mathematical manipulations can be perform
this choice will enable us to establish the mathematical c
respondence between spherically truncatedr 21 summation
and the Ewald method and shed some light on its phys
interpretation.

In analogy to the trick applied in Eq.~1.2! to derive the
Ewald sum for the infinite system, we start by multiplyin
the total energy of the system in Eq.~1.1! by unity @erfc(x)
1erf(x)51#, i.e.,
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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Etot5
1

2 (
i 51

N

(
j Þ i 51

`
qiqj erfc~ar i j !

r i j

1
1

2 (
i 51

N

(
j Þ i 51

`
qiqj erf~ar i j !

r i j
, ~5.1!

wherea is a damping parameter determining how fast t
complementary error function falls off from one~at r i j 50!
to zero with increasingr i j . Our goal now is to subdivide the
total energy,

Etot5E~1!
tot 1E~2!

tot , ~5.2!

such thatE(1)
tot represents the dominant contribution asso

ated with the damped Coulomb pair potential whileE(2)
tot is a

correction term that can be made arbitrarily small. Unfor
nately, the breakdown ofEtot in Eq. ~5.1! does not satisfy this
condition as the second term becomes very large for la
values ofa.

A remedy to the problem is to simply add and subtra
the self term~for i 5 j ! associated with the second contrib
tion in Eq. ~5.1!,

lim
r i j→0

H 1

2 (
i 51

N qi
2 erf~ar i j !

r i j
J 5

a

p1/2(
i 51

N

qi
2, ~5.3!

on the right-hand side of Eq.~5.1!, and subsequently to de
fine E(1)

tot andE(2)
tot as follows:

E~1!
tot 5

1

2 (
i 51

N

(
j Þ i 51

`
qiqj erfc~ar i j !

r i j
2

a

p1/2(
i 51

N

qi
2, ~5.4!

E~2!
tot 5

1

2 (
i 51

N

(
j 51

N
qiqj erf~ar i j !

r i j
. ~5.5!

In the following we will assert, both numerically an
analytically, that for a range ofa valuesE(2)

tot thus defined,
indeed, represents a small correction toE(1)

tot . Also, in Sec.
VI we will demonstrate thatE(2)

tot is identical to the
reciprocal-space energy in the Ewald sum; the latter
therefore be viewed as the systematic error introduced w
replacing the bare Coulomb pair potential by the damp
one. Our discussion follows closely the formal developm
in Secs. III B and III C, the only differences arising from th
replacement of the bare potential by the damped pair po
tial.

In practice,E(1)
tot can only be evaluated for a finite cuto

radius,Rc . Equation~5.4! is therefore written as follows:

E~1!
tot ~Rc!5

1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj erfc~ar i j !

r i j
2

a

p1/2(
i 51

N

qi
2. ~5.6!

In analogy to Sec. III B, the charge-neutralized~or ‘‘true’’
Madelung! potential then becomes

Etot
Mad~Rc!'E~1!

tot ~Rc!2Etot
neutr~Rc!, ~5.7!

where, by analogy with Eq.~3.5!, the energy associated wit
the charge-neutralizing surface charge is given by

Etot
neutr~Rc!'

1

2 (
i 51

N
qiDqi~Rc!erfc~aRc!

Rc
. ~5.8!
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Following the development in Sec. III C, this expression m
formally be replaced by

Etot
neutr~Rc!' lim

r i j→Rc
H 1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj erfc~ar i j !

r i j J
1

erfc~aRc!

2Rc
(
i 51

N

qi
2, ~5.9!

where the additive constant is a self term for each ion@see
also Eq.~3.12!#. The Madelung energy in Eq.~5.7! may then
be written as follows:

Etot
Mad~Rc!'

1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

Vsh
EW~r i j !2Eself, ~5.10!

where the shifted Coulomb pair potential from Eq.~3.13!
was replaced by the ‘‘shifted~or charge-neutralized! Ewald
potential,’’

Vsh
EW~r i j !5

qiqj erfc~ar i j !

r i j
2 lim

r i j→Rc

H qiqj erfc~ar i j !

r i j
J . ~5.11!

By analogy with the self term in Eqs.~3.10! and ~3.15!, the
additive constant in Eq.~5.10!,

Eself5S erfc~aRc!

2Rc
1

a

p1/2D(
i 51

N

qi
2, ~5.12!

is a self term for each ion that is merely added to the to
Madelung energy of the system. Inserting these definitio
Eq. ~5.10! may be rewritten more explicitly as follows:

Etot
Mad~Rc!'

1

2 (
i 51

N

(
j Þ i

~r i j ,Rc!

S qiqj erfc~ar i j !

r i j

2 lim
r i j→Rc

H qiqj erfc~ar i j !

r i j
J D

2S erfc~aRc!

2Rc
1

a

p1/2D(
i 51

N

qi
2. ~5.13!

The interpretation of these expressions is the same
that for the undamped potential~see Sec. III C!, namely, Eqs.
~5.10!–~5.13! describe how, for the damped Coulomb pa
potential, the Madelung energy can be extracted from
total energy of the spherically truncated, charged system@see
also Figs. 2~a! and 2~c!#. As in Sec. III C, these expression
reveal that the physical concept of charge neutralization
the system surface is equivalent to the operational conce
shifting the pair potential. In Sec. V C, the relevant expr
sions for the forces and stresses associated with Eq.~5.10!
will be derived; these will then provide the basis for t
molecular-dynamics simulations discussed in Sec. VII.

Figures 14~a! and 14~b! demonstrate the dramatic im
provements due to damping@Eq. ~5.13!# in the approach of
the Madelung energies of the perfect NaCl crystal and
MgO melt towards their correct values indicated by t
dashed horizontal lines. For the value ofa50.8/a chosen for
these illustrations, in both cases the Madelung energy
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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proaches its correct, fully converged Ewald value very ra
idly ~dashed horizontal line! and, forRc>2a, is practically
converged. The rapid approach to zero of the underly
damping function, erfc(ar), which is responsible for this be
havior, is shown in Fig. 14~a! ~right axis!.

The particularly dramatic benefits of damping in the ca
of the interfacial systems are illustrated in Figs. 15~a!–15~c!
for the case of the free~100! surface. By contrast with the
practically undamped oscillations in the excess energie
Fig. 10~a!, the damped energies in Fig. 15~a! converge rap-
idly to their correct values obtained from Parry’s sla
version25 of the Ewald sum~dashed horizontal lines!. Re-
markably, when increasing the value ofa from 0.8/a to
1.5/a, the effective range of the potential decreases fr
Rc'2.6a to about 1.5a, with virtually no effect on the value
of the fully converged energy.

The equally dramatic effects on the surface stresses~for-
mal expressions for the stresses and forces are given in

FIG. 14. Comparison of the charge-neutralized damped and undam
Madelung energies for~a! the zero-temperature perfect crystal and~b! the
MgO melt fora50.8/a @see also Figs. 6 and 7~b!#. In ~a! the rapid approach
to zero of the underlying damping function, erfc(aRc) is also illustrated
~right axis!. The dashed horizontal lines indicate the correct Ewald valu
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 15. Effect of damping on the Coulomb contribution to the ener
forces, and stresses of the MgO~100! free-surface at zero temperature.~a!
Surface energy fora50.8/a and 1.5/a ~in units of q2/a3!; for comparison,
see the undamped surface energy in Fig. 10~a!; ~b! related surface stresse
per unit area parallel~xx component! and perpendicular~zz component! to
the surface~in units of q2/a3!; ~c! force per ion in the outermost plane an
total excess force per ion~i.e., integrated over the entire surface region a
normalized to the number of ions in the outermost plane; in units ofq2/a2!.
The dashed horizontal lines in~a!–~c! indicate the correct Parry value
~Ref. 25!.
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
V C! are illustrated in Fig. 15~b!, which shows the Gibbsian
excess stresses per unit area parallel~xx component! and per-
pendicular~zz component! to the surface. We note that th
Coulomb stresses shown here are balanced by the stre
associated with the short-range repulsive part of the po
tial. This is the reason why thezzcomponent of the Coulomb
stress does not vanish, in spite of the fact that thetotal zz
stress vanishes in the fully relaxed surface. By contrast,
xx andyy components of the total surface stress are usu
finite, indicating that the surface would prefer to have a l
tice parameter that is different~usually shorter! than that of
the bulk crystal.

Finally, shown in Fig. 15~c! are two types of Coulomb
forces per ion, the force on each individual ion in the out
most plane and the total excess force per ion~i.e., integrated
over the entire surface region and normalized to the num
of ions in the outermost plane!. Again, since the surface i
relaxed, thetotal force on each ion vanishes although t
Coulomb forces are finite and balanced by the short-ra
forces. The remarkable result in Figs. 15~b! and 15~c! is that
both the stresses and forces settle down very rapidly to t
correct values obtained from the Parry formula,25 with ap-
proximately the sameRc range as the energy in Fig. 15~a!.

B. Relationship with real-space Ewald energy

To facilitate the comparison of Eq.~5.13! with the
Ewald method, it is useful to rewrite the starting express
for the Ewald sum, Eq.~1.2!, in a manner analogous to Eq
~5.4!, by simply adding and subtracting on the right-ha
side of Eq.~1.2! the self term~for n50 and i 5 j ! associated
with the erf(ar) term @see also Eq.~5.3!#,

lim
unLu→0

H 1

2 (
i 51

N qi
2 erf~aunLu!

unLu J 5
a

p1/2(
i 51

N

qi
2. ~5.14!

The real- and reciprocal-space contributions to the Ew
sum in Eq.~1.5! may then be written as follows:

Er
tot5

1

2 (
i 51

N

(
j 51

N

( 8
n50

`
qiqj erfc~aur i j 1nLu!

ur i j 1nLu

2
a

p1/2(
i 51

N

qi
2, ~5.15!

Ek
tot5

1

2 (
i 51

N

(
j 51

N

(
n50

`
qiqj erf~aur i j 1nLu!

ur i j 1nLu
, ~5.16!

where the prime has been omitted in Eq.~5.16!, indicating
that the self term is now included. By subdividing the Ewa
sum in this unconventional manner, similar to the breakdo
of the total energy in Eqs.~5.2!, ~5.4!, and ~5.5! we assure
that in practiceEk

tot represents a small correction to the re
space term,Er

tot . As demonstrated below, this greatly facil
tates the comparison between the Ewald sum@Eqs. ~1.5!,
~5.15!, and~5.16!# and the damped, directr 21 sum.

An obvious difference between Eq.~5.13! and the real-
space Ewald energy in Eq.~5.15! is that the latter implies the
system to be periodic. This can sometimes be an advan
because one can then apply the so-called minimum-im

,

se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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truncation method. By contrast with spherical truncation,
this method every ion is surrounded by the same, full con
of the simulation cell. Since the latter is usually neutral,
benefit of minimum-image truncation is that every ion is th
automatically embedded in a neutral environment for
purpose of computing its Coulomb energy. Unfortunate
however, when the simulation cell is rather large or when
shape deviates considerably from a cube, the method is
very practical.

The most important difference between the real-sp
expressions given by Eqs.~5.13! and ~5.15! is that, by con-
trast with the damped, directr 21 sum in Eq. ~5.13!, the
real-space Ewald expression in Eq.~5.15! is unshifted~i.e.,
non-neutralized!, with a discontinuity of the potential and it
derivatives atr i j 5Rc ; Eq. ~5.15! therefore represents th
Rc→` limit of Eq. ~5.13!. The effect of shifting on the real
space Ewald potential@i.e., of converting Eq.~5.15! into Eq.
~5.13!# is demonstrated in Figs. 16~a! and 16~b! for the per-
fect crystal and the melt, again fora50.8/a. As expected, in
both cases charge neutralization dramatically reduces

FIG. 16. Effect of charge neutralization~or shifting! on the dampedr 21

potential fora50.8/a. ~a! Zero-temperature perfect crystal;~b! MgO melt.
The dashed horizontal lines indicate the Ewald values.
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
nt
e
s
e
,
s
ot

e

he

magnitude of the oscillations and therefore speeds the c
vergence towards the correct Madelung energy~dashed hori-
zontal line!, the net effect being a reduction in the effectiv
range of the potential.

C. Forces and stresses

Similar to Sec. III C, to facilitate the evaluation of th
forces and stresses, our starting equation~5.10! is rewritten
as follows@see also Eq.~3.15!#:

Etot
Mad~Rc!'

1

2 (
i 51

N

Ei
Mad~Rc!2Eself, ~5.17!

where, by analogy with Eq.~3.14!, the Madelung energy o
ion i was defined by

Ei
Mad~Rc!5 (

j Þ i
~r i j ,Rc!

Vsh
EW~r i j !. ~5.18!

We note that

d erfc~ar i j !

dri j
52

2a

p1/2exp~2a2r i j
2 !; ~5.19!

the derivative ofVsh
EW(r i j ) @see Eq.~5.11!# therefore becomes

dVsh
EW~r i j !

dri j
52qiqj S erfc~ar i j !

r i j
2 1

2a

p1/2

exp~2a2r i j
2 !

r i j

2
erfc~aRc!

Rc
2 2

2a

p1/2

exp~2a2Rc
2!

Rc
D . ~5.20!

The force on ioni may then be written as follows@see also
Eqs.~3.16! and ~3.18!#:

Fia~Rc!52
]Ei

Mad

]r ia

52 (
j Þ i

~r i j ,Rc!

dVsh
EW~r i j !

dri j

r i j a

r i j
5 (

j Þ i
~r i j ,Rc!

f i j a , ~5.21!

where

f i j a5 (
j Þ i

~r i j ,Rc!

qiqj H S erfc~ar i j !

r i j
2 1

2a

p1/2

exp~2a2r i j
2 !

r i j
D

3
r i j a

r i j
2S erfc~aRc!

Rc
2 1

2a

p1/2

exp~2a2Rc
2!

Rc
D

3
r i j a

Rc
U

r i j 5Rc

J ~5.22!

is the pair force on ioni due to its interaction with ionj.
Analogous to Eq.~3.21!, the virial stress tensor defined i
Eq. ~3.20! then becomes
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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sab~Rc!5
1

6V (
i 51

N

(
j Þ i

~r i j ,Rc!

qiqj H S erfc~ar i j !

r i j
2 1

2a

p1/2

3
exp~2a2r i j

2 !

r i j
D r i j ar i j b

r i j
2S erfc~aRc!

Rc
2 1

2a

p1/2

3
exp~2a2Rc

2!

Rc
D r i j ar i j b

Rc
U

r i j 5Rc

J . ~5.23!

Because of the exponentials in this expression, a sim
relationship between the energy and pressure forcubic crys-
tals similar to Eq.~3.23! does not exist fora.0. The con-
vergence behaviors of the pressure and the energy are t
fore not quite identical although, in practice, the effectiveRc

range of the charge-neutralized pressure is found to be
same as that of the energy.

VI. ANALYSIS OF THE ERROR TERM

As already mentioned, a critical problem with the ope
tional approach of damping is the illumination of the mag
tude and physical nature of the systematic error introdu
when replacing the barer 21 pair potential by a damped one
We recall that the purpose of the particular breakdown
Etot5E(1)

tot1E(2)
tot in Eqs.~5.2!, ~5.4!, and~5.5! was to capture

the largest by far contribution toEtot
Mad in E(1)

tot while ensuring
that the systematic error,DEtot

Mad[E(2)
tot , is small for all prac-

tical purposes. Starting from Eq.~5.5!, our analysis ofDEtot
Mad

will closely follow the Ewald method. Apart from making
formal connection with this method, this will enable us
illuminate the physics underlying the reciprocal-space te
in the Ewald sum.

A. Formal relationship

To enable Fourier transformation of the expression
E(2)

tot in Eq. ~5.5!, periodicity has to be imposed on the sy
tem. At this point we need not specify whether this perio
icity applies to all three dimensions, as in the conventio
Ewald method, or to only two dimensions while allowing f
finite thickness in the third dimension.25 In full analogy to
the error-function term in Eq.~1.2!, the expression forE(2)

tot is
therefore rewritten as follows:

DEtot
Mad[E~2!

tot 5
1

2 (
i 51

N

(
j 51

N

(
n50

`
qiqj erf~aur i j 1nLu!

ur i j 1nLu
. ~6.1!

As discussed above, the self term@for i 5 j and n50; see
Eqs. ~5.20! and ~5.14!# is included in this expression; thi
term is needed if one wishes to take the Fourier transform
Eq. ~6.1!.

We note that Eq.~6.1! is identical to the starting expres
sion ~5.16! for the reciprocal-space Ewald term. Followin
the Ewald method, Eq.~6.1! is therefore Fourier trans
formed. The reciprocal-space term in the Ewald sum t
obtained may be written in the well-known manner as f
lows:

DEtot
Mad[E~2!

tot [Ek
tot5E~k50!1E~kÞ0!. ~6.2!
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If we assume 3D periodicity in Eq.~6.1!, i.e., n
5(nx , ny , nz), thek50 andkÞ0 terms in Eq.~6.2! may be
written as follows:

E~k50!5
2p

3V S (
i 51

N

qir i D 2

, ~6.3!

and

E~kÞ0!5
2pNq2

V (
kÞ0

`
exp~2k2/4a2!

k2 Q~k!, ~6.4!

where V is the simulation-cell volume andQ(k) is the
charge structure factor defined in Eq.~4.18!.

For a 2D periodic slab geometry, i.e.,n5(nx , ny), these
terms become considerably more complex.25 Most important,
by contrast with Eqs.~6.3! and~6.4! the double sum involv-
ing i andj can no longer be reduced to the square of a sin
sum.25 Also, because of the 2D periodicity within the sla
plane, with unit-cell areaA, the in-plane component ofr i j ,
pi j 5$xi j , yi j %, has to be distinguished from its out-of-plan
component,zi j . Following Parry,25 the k50 andkÞ0 terms
in Eq. ~6.2! may then be written as follows:

E~k50!52
p

A (
i 51

N

(
j 51

N

qiqj

3H exp~2a2uzi j u2!

ap1/2 1uzi j uerf~auzi j u!J , ~6.5!

and

E~kÞ0!5
p

2A (
i 51

N

(
j 51

N

qiqj(
kÞ0

`
exp@ i ~k–pi j !#

k

3@F~ uk,zi j u!1F~k,2uzi j u!#, ~6.6!

where

F~k,6uzi j u!5exp~6kuzi j u!erfcS k

2a
6auzi j u D . ~6.7!

Because of the explicitzi j dependence, the double sum
in Eqs. ~6.5! and ~6.6! cannot be reduced to a single sum
Apart from the greater mathematical complexity of the
terms by comparison with Eqs.~6.3! and ~6.4!, the fact that
these double sums have to be explicitly evaluated ma
molecular-dynamics simulations of interfacial systems us
Parry’s method25 prohibitively expensive.

Equations~6.1!–~6.7! provide the theoretical framewor
needed for assessing the nature and magnitude of the sys
atic error, DEtot

Mad(a), introduced when replacing the bar
Coulomb potential by the damped one. By definition, in t
absence of damping~i.e., for a50! the error term vanishes
identically; in practice, however, there seems to be no wa
avoid a finite value ofa because, without some degree
damping, the energy oscillations in the real-space ene
E(1)

tot , fall off too slowly, and hence require a rather lon
truncation radius. As in the Ewald method, the challenge
therefore to identify the optimum compromise between
practical benefits of damping and the systematic errors t
inevitably introduced.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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B. Simulation results

A practical approach towards assessing the importa
of the error term in any given case is to determine the fu
converged real-space Madelung energy, forces, and stre
for various values ofa; any change in the fully converge
value with increasinga then signals the importance of in
cluding the error term. For example, according to Fig. 17
fully converged Madelung energy of the perfect NaCl crys
is practically independent ofa all the way up toa51.5/a, as
is the pressure~not shown!, indicating that the error term is
insignificant for this range ofa values. This remarkable re
sult demonstrates that, fora51.5/a, a cutoff radius ofRc

51.5a is sufficient to accurately determine the Madelu
constant, the reason being that the reciprocal-space ter
only '2.031026q2/a in this case~for details see Sec
VI C1!.

The average energy and pressure per ion in molten M
are shown in Figs. 18~a! and 18~b! for four values ofa
ranging between 0.8/a and 1.5/a ~please note the highly ex
panded energy scale in comparison with Fig. 17!. As dis-
cussed in Sec. III B, the melt was prepared by molecu
dynamics simulation using Buckingham-type interion
potentials21 and a point-ion model in which the Coulom
energy, forces, and stresses were evaluated using the fu
Ewald method. Two distinct effects of damping are clea
visible in Fig. 18. While increased damping significantly r
duces the effective range of both the energy and pres
~from Rc'2.4a for a50.8/a to Rc'1.4a for a51.5/a!, the
systematic errors thus introduced increase in a highly non
ear fashion; interestingly, the errors in the energy and p
sure are of comparable magnitude but have opposite si
~For an analysis of this behavior, see Sec. VI C2.!

C. Discussion

In an attempt to better understand the magnitude
underlying physics of the error term at least for a 3D perio
system, we now analyze thek50 andkÞ0 contributions to

FIG. 17. a dependence of the Madelung energy per ion of the ze
temperature perfect crystal~in units of q2/a!.
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tot in Eq. ~6.2!. According to Eq.~6.3!, the k50 damping

correction vanishes unless the simulation cell has a net
pole moment. In many situations, a finite magnitude
E(k50) arises from a finite-size effect introduced when 3
periodicity is imposed on an aperiodic system so as to en
the Fourier transformation. For example, an infinitely e
tended ionic melt will not, at any instant, exhibit a net dipo
moment, by contrast with a finite-sized, periodically e
tended system. Including thek50 term, and the related
forces and stresses, in the simulation would then give ris
the creation of a long-ranged dipole moment due to the a
ficially imposed periodicity; this in turn would systematical
alter the dynamics of the infinite system and hence exa
bate this finite-size effect. In many cases thek50 term is
therefore dropped from Eq.~6.2!, thus more realistically rep-
resenting the behavior of the infinite system. In all our sim
lations we have therefore omitted this term as well. For a
periodic system, Eq.~6.2! therefore simplifies as follows:

-

FIG. 18. Effect of damping in molten MgO on~a! the Madelung energy per
ion and~b! the pressure per ion. Both are given in energy units ofq2/a; to
convert the pressure~which is an energydensity! into units of q2/a4, the
data have to be divided by 3V, whereV5a3/8 is the atomic volume@see
also Eq.~5.23!#.
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DEtot
Mad[E~2!

tot [E~kÞ0!. ~6.8!

The finite-k term in Eqs.~6.2! and ~6.8! has a rather
different physical origin than thek50 term. According to
Eq. ~6.4!, the term can be written as auku-weighted sum over
the peaks in the charge structure factor,Q(k), defined in Eq.
~4.18!. Since, by definition,Q(k)5us(k)u2.0, it follows
that E(kÞ0).0, i.e., in agreement with our simulations@see,
e.g., Fig. 18~b!#, the error term is alwayspositive. This can
be understood in terms of the definition ofE(2)

tot ([E(kÞ0)) in
Eq. ~5.5!: The self term@for i 5 j in Eq. ~5.5!# is always large
and positive whereas all remaining terms are either posi
or negative, their net effect being relatively small, i.e.,E(2)

tot

.0.
To illustrate the physical meaning ofE(kÞ0), we con-

sider a crystalline system for whichQ(k) consists of a dis-
crete set of Bragg peaks. As already discussed in Sec. I
the first peak inQ(k) appears atukminu'2p/d(hkl) and is
associated with the most widely spacedcharged lattice
planes,~hkl!; all other Bragg peaks involve smaller spacin
between charged lattice planes, and hence largerk vectors.
By contrast with thesek vectors, thek sum in Eq. ~6.4!
involves reciprocal-lattice vectors associated with thesimu-
lation cell, with its smallest values being of the order
2p/Lb , whereLb (b5x,y,z) is the linear dimension of the
simulation cell in theb direction.

Clearly, the magnitude ofLb has nothing to do with the
physical length scale of thematerial. The essential physic
of the finite-k term is therefore contained in the structur
characteristics of the material as captured inQ(k). The role
of the prefactor ofQ(k) in Eq. ~6.4! is therefore merely to
weight this structure inQ(k) in terms of an arbitrary length
scale associated with the simulation cell. By assigning a p
ticularly large weight to the lowest-k structural features, i.e.
those with the longest wavelengths,E(kÞ0) is a particularly
sensitive function of structural features with a length scale
the simulation-cell size. As in thek50 term, any system-size
effects arising from the artificially imposed periodicity a
therefore enhanced.

1. Zero-temperature perfect crystal

To establish a reference basis, we first analyze the e
term for the perfect rocksalt crystal at zero temperature, w
charges6q. Given that the$111% planes are the most widel
spacedcharged planes in this structure, the first peak
Q(k) appears atuk111u52p/d(111) ~see also Sec. IV B!.
Due to the perfect constructive interference for thisk vector,
Eq. ~4.18! yieldsQ(k111)5N, whereN is the total number of
ions in the simulation cell. According to Eq.~6.4!, the related
contribution to the error term from all eight equivalent@111#
directions is given by

E~k111!58
2pN2q2

V

exp~2uk111u2/4a2!

uk111u2 . ~6.9!

For sufficiently small values ofa this term dominates in
E(kÞ0) because the remaining peaks inQ(k) are at largerk
vectors and hence more severely damped by the expone
factor. With d(111)5()/3)a and V5Na3/8 for the NaCl
lattice, Eq.~6.9! yields
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E~k111!/N5
32q2

3pa
exp~23p2/a2a2!. ~6.10!

For example, fora51.0/a and 1.5/a this expression yields
values of 4.7310213 and 2.031026q2/a, respectively, i.e.,
the term is negligible~see also Fig. 17!. The same analysis
can be applied to any perfect-crystal structure, leading to
conclusion that fora<1.5/a the error term is totally negli-
gible and for largera values the term increases approx
mately exponentially as a function ofa22 @see Eq.~6.10!#.

2. Effects of thermal disorder: High-temperature
crystal and melt

The effect of thermal disorder in a perfect crystal
readily estimated. As a simple model we consider a cry
with randomly displaced ions,r i5r i

01ui , wherer i
0 indicates

perfect-crystal lattice sites and theui are small displacemen
vectors (uui u!a) relative to these sites. Insertion of the
into Eq. ~4.18! yields

Q~k!5
1

q2N U(
i 51

N

qj exp@ i ~k–ui !#exp@ i ~k–r i
0!#U2

. ~6.11!

As discussed earlier, provideda is small enough we
need only evaluateQ(k) for small k vectors where Eq.
~6.11! simplifies as follows:

Q~k!'
1

q2N U(
i 51

N

qj~11 ik–ui !exp~ ik–r i
0!U2

5
1

q2N U(
i 51

N

qj~k–ui !exp~ ik–r i
0!U2

. ~6.12!

Here we have used the fact that the perfect-crystal cha
structure factor vanishes for smallk vectors (uku,ukminu
5uk111u). Assuming uncorrelated, random displacements
the ions~i.e., ignoring any effects of phonons!, the average
of the dot product is simply given bŷuiuj&5^u2&d i j . Equa-
tion ~6.12! then becomes

Q~k!5^~k–ui !
2&5 1

3k
2^u2&, ~6.13!

where the factor of 1/3 comes from the directional averagi
Equation~6.4! then yields

E~kÞ0!'
2p

3V
Nq2^u2&(

kÞ0

`

exp~2k2/4a2!. ~6.14!

Replacing the discrete sum by the integral, i.e.,(k
→V/(2p)3*d3k and using Eq.~4.16!, this expression can be
evaluated approximately to give

E~kÞ0!'
1

3p
Nq2^u2&E dkk2 exp~2k2/4a2!

'0.38N
q2

a

^u2&
a2 ~aa!3. ~6.15!

To test the validity of this approximate expression, F
19 shows the full error term determined directly for a perfe
MgO crystal with randomly displaced ions for a range ofa
values; the average magnitude,^u2&, of the random displace
ments was chosen such as to correspond toT52500 K in the
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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actual crystal determined by molecular-dynamics simulati
using the full Ewald sum. According to Fig. 19, the agre
ment between these directly calculated values~closed
circles! and the approximate results obtained from Eq.~6.15!
for the same value of̂u2& is excellent~solid line, with a
slope of 3.0!. Therefore, the approximate expression~6.15!,
indeed, represents the small-a expansion of the error term fo
a randomly disordered perfect crystal.

Contrary to the assumption underlying Eqs.~6.13! and
~6.14!, in reality the ion movements are correlated due to
phonons. To analyze the effects of these correlations on
error term, we performed constant-pressure molecu
dynamics simulations for the perfect MgO crystal
T52500 K using the full 3D Ewald sum~squares in Fig. 19!.
According to Fig. 19, these correlations reduce the error t
by nearly an order of magnitude relative to the uncorrela
case~closed circles!. Interestingly, however, thea3 increase
in E(kÞ0) is practically unaffected by these correlations, su
gesting that Eq.~6.15! remains approximately correct if w
replace^u2& by '0.1̂ u2&. One reason for the dramatic re
duction in E(kÞ0) due to phonons is that most phono
branches are electrically inactive, i.e., they do not contrib
to Q(k).

It is well known that for crystalline systems the value
^u2& is approximately proportional to the temperature a
inversely proportional to the bulk modulus,B, i.e.,

^u2&
a2 'CkBT/B, ~6.16!

wherekB is the Boltzmann constant andC is a proportional-
ity factor. ~This expression is readily derived within a ha
monic approximation in which the ions are connected to
perfect-crystal lattice by harmonic springs and all ions
brate independently of each other.! Inserting Eq.~6.16! into
Eq. ~6.15! yields

FIG. 19. Doubly logarithmic plot of the error term@Eq. ~6.8!# vs a obtained
from constant-pressure simulations for MgO using the full 3D Ewald su
In agreement with Eq.~6.15! ~solid line!, the data calculated directly for th
randomly disordered crystal~with ^u2& corresponding to the actual crystal
T52500 K; closed circles! exhibit a slope of 3.0. Also shown are the resu
for the actual crystal atT52500 K~in which the effects of phonons are full
incorporated!, the supercooled melt atT52500 K, and the melt quenched t
T50 K with subsequent relaxation of the ion positions and the pressur
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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E~kÞ0!/N50.38C~aa!3
q2

a

kBT

B
, ~6.17!

i.e., the error term for a crystal at finite temperature sho
increase approximately linearly withT. The molecular-
dynamics simulation results in Fig. 20, obtained for a va
of a51.0/a, demonstrate that this is, indeed, true not on
for the crystal~circles! but also for the melt~squares!. The
lower density of the melt compared to the crystal results i
smaller bulk modulus; this is the reason for the higher slo
in the linear fit to the data for the melt.

In contrast to the crystal, the melt exhibits two types
structural disorder, which we refer to as ‘‘thermal disorde
and ‘‘coordination disorder.’’ First, as in the crystal, the io
in the melt perform thermal vibrations with a magnitud
similar to that in the crystal. Second, the melt is further d
ordered, as evidenced by the presence of coordination
fects. These are responsible for the fact that, even u
elimination of the thermal disorder~e.g., by quenching to
T50 K with subsequent relaxation of the forces and t
pressure!, the error term for the melt has a finite value
T50 K ~see Fig. 20!.

The contribution toE(kÞ0) from the coordination disor-
der can be assumed to be roughly independent of temp
ture and given by its value atT50 K. The strong, nearly
tenfold increase inE(kÞ0) in Fig. 20 with increasing tempera
ture, from'0.531024q2/a at T50 K to '4.831024q2/a
at T53000 K, is therefore almost entirely due to the therm
disorder. At elevated temperaturesE(kÞ0) for the melt is
therefore dominated by thethermaldisorder. For this reason
it is not surprising that both the high-temperature crystal a
the melt are equally well described by the approximate
pressions~6.15! and ~6.17! ~see Figs. 19 and 20!.

Particularly interesting is the increase inE(kÞ0) propor-
tional to a3, which arises from the fact that in the smallk
limit,

Q~k!'Dk2, ~6.18!

whereD is a constant. This quadratic form is a general fe
ture of any equilibrium ionic system~except the zero-
temperature perfect crystal, which represents a special c!.
Equation ~6.18! follows from the fact that, by definition

.
FIG. 20. Temperature dependence of the error term for molten M
~squares! and the perfect crystal~circles! for a51.0/a. The solid lines rep-
resent linear fits to the data.
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Q(k) is a symmetric function ofk, i.e., Q(k)5Q(2k) @see
Eqs. ~4.15! and ~4.18!#, and that charge neutrality require
that Q(k50)50.

To determine the related energy,E(kÞ0), we replace the
sum in Eq.~6.4! by the integral and use Eq.~4.16! to write

E~kÞ0!'
Nq2

4p2 E d3k
exp~2k2/4a2!

k2 Q~k!

5
Nq2

p E dk exp~2k2/4a2!Q~k!'
2Nq2D

p1/2 a3,

~6.19!

where the last equality follows from insertion of Eq.~6.18!,
recognizing that this relation is valid only for sufficient
small values ofa ~see also Sec. VI C1!.

Also starting from Eq.~6.4!, the pressure associated wi
E(kÞ0) can be evaluated following a similar procedure. Usi
the well-known trick of rescaling the ionic positions byr
5V1/3s ~wheres represents ‘‘reduced,’’ volume-independe
coordinates!, this pressure can be written as follows:

p~kÞ0!52
]E~kÞ0!~V1/3s!

]V

5
2pNq2

3V (
kÞ0

`

~12k2/2a2!
exp~2k2/4a2!

k2 Q~k!.

~6.20!

Then, following the same procedure as in the derivation
Eq. ~6.19!, the small-a expression forp(kÞ0) becomes

p~kÞ0!52
4rq2D

p1/2 a3, ~6.21!

wherer5N/V is the number density.
This result shows thatp(kÞ0);a3, i.e., like the system-

atic error in the real-space energy, the related error in
pressure can be made arbitrarily small by simply makinga
small. Remarkably, however, in the small-a limit p(kÞ0) is
always negative for an equilibrium ionic~solid or liquid!
system; consistent with Fig. 18~b!, this result indicates tha
damping of the real-space pair potential results in the los
cohesion in the system.

For equilibrium ionic liquids, the constantD in Eqs.
~6.18!–~6.21! can be evaluated using the Stillinger–Love
second moment condition,20 according to which

D5l25
kBT

4prq2 , ~6.22!

where l is the Debye screening length. Insertion of E
~6.22! into Eqs.~6.19! and ~6.21! yields

E~kÞ0!'
NkBT

2rp3/2a3, ~6.23!

p~kÞ0!'2
kBT

3p3/2a3. ~6.24!

In the simulation of liquids, by simply adding these an
lytic expressions to the energy and pressure@Eqs.~5.17! and
~5.23!#, the systematic errors due to damping can be gre
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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reduced. For example, up toa51.2/a about 80% of the er-
rors in Figs. 18~a! and 18~b! can thus be eliminated; fo
larger a values the small-a expansions in Eqs.~6.23! and
~6.24! become gradually less valid.

3. Effect of structural correlations

A comparison of the error term for a chemically diso
dered, structurally unrelaxed and relaxed perfect crysta
T50 K is helpful for understanding why the contributio
due to coordination disorder in the melt is much smaller th
that due to thermal disorder. To generate a chemically dis
dered perfect crystal, the positive and negative near
neighbor charges on the NaCl lattice were randomly
changed. The initial, unrelaxed structure then yields
relatively large value forDEtot

Mad[E(kÞ0) of about 0.08q2/a
~for a51.0/a!; by contrast, in the fully relaxed system th
error term of'0.231023 is over two orders of magnitude
smaller and of similar magnitude as that of the m
quenched to zero temperature.

This comparison suggests that thermal disorder is
pable of generating higher-energy structural states that a
the relatedQ(k) in a manner similar to the structural effec
present in a not fully relaxed system. By localizing the c
ordination disorder, the effect of the relaxation of the ions
to greatly reduce long-range structural effects present in
unrelaxedQ(k) while generating a physically realistic struc
ture. Given the great sensitivity of the error term to su
usually artificial and/or unphysical long-range effects, it
not surprising that its value drops dramatically upon rela
ation. The reduction in the value ofE(kÞ0) in Fig. 19 by an
order of magnitude when replacing the random displa
ments of the ions in the randomly disordered perfect cry
by the actual, highly correlated displacements in the hi
temperature crystal represents another example of this sim
principle. This principle is related to the simple notion
screening as given by the Poisson equation and the Bo
mann factor, i.e., charges obeying Poisson’s equation ten
arrange in such a way as to screen their own Coulomb
tential.

In summary, the magnitude ofE(kÞ0) depends strongly
on the degree oflong-rangestructural disorder in the system
particularly on whether or not the simulated system is
structural equilibrium and on long-range structural corre
tions associated with phonons. Due to structural featu
spanning the entire length of the simulation cell, an un
laxed, highly disordered system may thus exhibit feature
Q(k) well below ukminu; however, relaxation usually has th
effect of localizing any structural disorder, and hence elim
nating or greatly reducing these artificial, small-uku structural
features. Also, the effect of thermal disorder is to establi
via the phonons, medium- and long-range structural featu
appearing in the small-uku regime inQ(k), which hence con-
tribute to the error term.

4. Range of the Madelung potential in liquids and
solids

As for the molecular system and the undamped, char
neutralized system, we now investigate the effective rang
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the Madelung potential obtained for the damped, shif
Coulomb pair potential@see Eqs.~5.7! and ~5.13!#. Accord-
ing to Eq.~2.5!, this requires determination of the energy
interaction of the ions with the material beyondRc . Because
of the damping in Eq.~5.13!, this energy falls off exponen
tially with increasingRc ; its value for a given value ofRc is
controlled by erfc(aRc) @see Eq.~5.13!#. The exponentially
short range of the Madelung potential thus obtained is ba
solely on the contribution toVeff(r) in Eq. ~2.5! from the
real-spaceMadelung energy in Eq.~5.7!; it ignores possible
long-rangeeffects that might arise from thereciprocal-space
term and hence control the actual range of the potential.

According to Eq.~6.8!, the reciprocal-space energy re
resents the systematic error,E(2)

tot [E(kÞ0), introduced by the
damping; this energy has to be incorporated intoVeff(r) in
order to obtain the effective range of the total Madelu
energy from Eq. ~2.5!. Equation ~6.8!, connecting the
a-dependent reciprocal-space quantityE(kÞ0) with the real-
space quantityE(2)

tot , permits the effective range of th
reciprocal-space Madelung potential to be estimated.
cause of the error function, the individual contribution
qiqj erf(arij)/rij , to E(2)

tot in Eq. ~5.5! differ significantly from
zero only whenar i j *1, showing thatE(kÞ0) can be inter-
preted as representing the energy of interaction of some
erage ion with all the ions located beyond some cutoff d
tance,Rc;1/a. Thea3 variation ofE(kÞ0) described by Eq.
~6.19! therefore implies thatE(2)

tot ;DRc
23; this range is con-

siderably longer than that associated with theexponentially
short-ranged real-space energy.

The rather shortRc
23 effective range of the Madelun

energy16 of any equilibrium ionic system, which correspon
to Veff(r);Dr26 @see Eq.~2.5!#, is striking in that it is exactly
the same as that of the Lennard-Jones potential~see Sec.
II B !. Analysis of the interaction-strength parameter,D, can
provide insight into the origin of thisr 26 decrease ofVeff(r).
Starting from Eq.~6.18!, D can be calculated from the ex
pression

D5
1

2

]2Q~k!

]k2 U
k50

. ~6.25!

Then, combining the definition ofQ(k) in Eqs. ~4.15! and
~4.18! with the charge-neutrality condition, it is straightfo
ward to show thatD represents the following ensemble a
erage:

D;E E d3rd3r 8rs~r !r 8s~r 8!5E E d3rd3r 8p~r !p~r 8!,

~6.26!

wherep„r …5rs(r ) is the local dipole moment. Unless th
system is polarized, in thermodynamic equilibrium these
cal dipoles fluctuate about zero. The dipole–dipole corre
tion function in Eq.~6.26! therefore describes the couplin
between fluctuating local dipoles. As is well known, this ty
of coupling has ther 26 range of van der Waals interaction
and constitutes the physical justification for the attract
part of the Lennard-Jones potential.

We finally mention that a perfect-crystal lattice repr
sents an exception to the generalRc

23 behavior since it is
easy to group the ions in such a way as to avoid any lo
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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dipoles. As discussed in Sec. VI C1,Q(k) then vanishes
identically betweenk50 and the first crystalline peak, re
sulting in Eq. ~6.9! for E(kÞ0). Substitutinga by 1/Rc ,
E(2)

tot [E(kÞ0) is readily seen to decrease exponentially w
Rc . As a consequenceVeff(r) @see Eq.~2.5!# falls off faster
than any inverse power ofr. However, even a small pertur
bation of the perfect lattice sites generates local dipo
yielding Veff(r);r26.

VII. MOLECULAR DYNAMICS SIMULATIONS

The simulations of bulk and interfacial systems repor
so far in this article involved the full Ewald sum, 3D per
odic, or Parry’s slab version,25 against which the directly
summed,r 21 Coulomb energy, forces, and stresses could
tested. In the following we discuss a few molecula
dynamics simulations which, by contrast, directly apply t
above method by utilizing the charge-neutralized, damp
r 21 pair potential in Eq.~5.11! and the related forces an
stresses given by Eqs.~5.21!–~5.23!. Since, by virtue of the
charge-neutrality condition, the pair potential and all its d
rivatives are smoothly shifted to zero atRc , these expres-
sions are well suited to provide the basis for molecul
dynamics simulations. Using the combinations of t
damping parameter,a, and truncation radius,Rc , listed in
Table I, these simulations can be compared directly w
simulations involving the full Ewald sum.

In the following we consider a 3D periodic, perfect Mg
crystal in a cubic simulation cell of size (6a)3 containing
432 MgO molecules described by the interionic potentials
Sangster and Stoneham.21 The crystal is gradually heated
under zero external pressure, through the melting transi
while the lattice parameter, atomic structure, mean-squ
displacements, and internal energy are monitored.

In principle, a system described by Eqs.~5.11! and
~5.21!–~5.23! need not conserve energy because the ene
does not quite represent the correct integral of the forces~see
also Sec. III D!. Although the energy and its derivatives a
therefore not entirely consistent with one another, the sh
ing method in Eqs.~3.24! and~5.11! based on the concept o
charge neutralization has the advantage that the actual va
for the energy, forces, and pressure thus obtained are as
as desired to the correct ones, i.e., to those obtained for
unshifted potential. Therefore, as a critical test of our sim

TABLE I. Combinations of the damping parameter,a, and truncation ra-
dius,Rc , for the charge-neutralized, dampedr 21 Coulomb sum used in our
molecular-dynamics simulations of MgO. The value ofRc for a given
choice ofa was chosen such that the pressure in the zero-temperature
fect crystal is practically converged. For comparison, the parameters
for the spherically truncated, fully converged 3D Ewald sum are also lis
For the MgO interionic potentials of Sangster and Stoneham~Ref. 21!, the
Ewald sum gives a zero-temperature lattice parameter ofa054.2271 Å.

a(a0
21) Rc(a0)

Dampedr 21 1.0 2.71
Dampedr 21 1.2 2.00
Dampedr 21 1.5 1.46
Full Ewald 2.5 1.5
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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lation method, we carefully investigated the degree to wh
in microcanonical-ensemble simulations, the condition of
ergy conservation is satisfied.

As a test of the numerical consistency of the energy
forces, we performed constant-volume simulations of
crystal for a51.5/a0 , Rc51.46a0 ~the most strongly
damped, and hence shortest-range case; see Table I! for two
different time steps:Dt50.43 and 2.15 fs;a0 is the zero-
temperature lattice parameter. For the shorter time step,
mean temperature of;900 K and over a simulation time o
4.3 ps the energy fluctuated about the mean value
240.517 eV/molecule by;0.001 eV/molecule; a fluctuation
by this amount in the kinetic energy of a molecule transla
into a fluctuation in the temperature of only;4 K, which is
perfectly acceptable. For the longer time step, we obser
in addition a small upward drift of the energy of;0.0005
eV/molecule/ps.

To separate the limitations inherent to the dire
summation method from those arising from the numeri
integration of the equations of motion, we compared
above results with those obtained for the full Ewald meth
for which all departures from exact energy conservation
entirely due to the numerical integration scheme. The fl
tuations in the energy are then only;0.000 01 eV/molecule
for the shorter time step while for the longer time step
small upward drift of 0.0007 eV/molecule/ps is observe
This comparison indicates that the small drift is due to
finite time step in the integration scheme and not the dire
summation method. Thus, although, as anticipated, the
ergy fluctuations are considerably larger for the dire
summation method than for the full Ewald method, they
still rather small on an absolute scale. These differences
entirely irrelevant when the temperature is rescaled du
the simulation.

Given these results, the longer of the two time ste
combined with energy rescaling was used to~i! heat the per-
fect MgO crystal above the melting point,Tm ~estimated at
;3200 K for our potential! and~ii ! cool the melt belowTm .
In Figs. 21~a! and 21~b! the temperature dependence of t
lattice parameter,a(T), and internal energy are compare
for the four sets of parameters in Table I. Clearly, the d
continuity in both quantities between 3000 and 3500 K
due to the melting transition; the superheating of the cry
and the supercooling of the melt is due to the fact that
defect-free perfect crystal contains no nucleation cent
such as dislocations or free surfaces, that could trigger
first-order transition between the two phases at the mel
point.33

According to Figs. 21~a! and 21~b!, the four parameter
sets give rather similar results, although at the highest t
peratures the melt clearly exhibits a lower density for
largest value ofa. Following the discussion in Sec. VI C2, i
this regime the error term increases rapidly with increas
values ofa and with temperature~see Figs. 19 and 20!. For
more accurate simulations in this regime, it would theref
be advisable to apply less damping~i.e., choose a smallera
value!, with a consequently larger cutoff radius. As a mo
efficient alternative, one could simply compensate for
systematic errors due to damping made in the real-sp
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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pressure and energy. This requires addingp(kÞ0) andE(kÞ0)

given by Eqs.~6.24! and ~6.23! to Eqs. ~5.23! and ~5.17!,
respectively. For example, the additional cohesion provid
by p(kÞ0) will increase the density of the melt, thus great
reducing the systematic errors in the thermal expansion
Fig. 21~a!.

To investigate how damping affects other properties
the melt, we have also determined the structure and s
diffusion behavior. As described in Sec. IV A, in ionic sy
tems two structural measures are equally useful, the ra
distribution function,G(r ), and the radial charge distributio
function, Q(r ) @see Eqs.~4.1! and ~4.2!#. In Fig. 22, G(r )
andQ(r ) at 6000 K obtained for the four sets of simulatio
parameters are compared. According to these results, in
of the slightly different densities@see Fig. 21~a!#, the differ-
ences among the four parameter sets are remarkably sm
both G(r ) andQ(r ), suggesting that even for the stronge
damping (a51.5/a0) the distribution of the atoms an
charges in the melt is reproduced very well. Given Eqs.~4.1!

FIG. 21. Temperature dependence of~a! the lattice parameter~in units of
a0! and ~b! the internal energy per ion for the four sets of parameters
Table I.
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and~4.2!, we conclude that the underlying partial radial d
tribution functions differ by equally little, i.e., the underlyin
atomic structure of the melt is a rather insensitive function
a andRc . This behavior is consistent with the large body
simulations of ionic melts in which it was found that omi
sion of the reciprocal-space term in the Ewald sum has p
tically no effect on the structure of the melt.6,7

In the Arrhenius plot in Fig. 23 the mean-square d
placements of the ions in the melt are plotted against
reciprocal temperature between 3000 and 6000 K. The a
vation energy obtained from least-squares fits to the four d
sets increases from 0.96 eV/ion for the full Ewald sum
1.04 eV for the strongest damping. As for the density of
melt @Fig. 21~a!#, this comparison suggests that for mo
precise simulations in this regime, less damping should

FIG. 22. G(r ) andQ(r ) @see Eqs.~4.1! and~4.2!# for molten MgO at 6000
K for the four sets of parameters in Table I.

FIG. 23. Arrhenius plot for the mean-square displacement of the ions in
melt vs reciprocal temperature between 3000 and 6000 K for the four se
parameters.
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applied; alternatively, the systematic errors due to damp
can be greatly reduced by incorporating Eqs.~6.23! and
~6.24! into the simulation.

In summary, the above results demonstrate that e
relatively strong damping combined with a very short cut
radius reproduces the structure and properties of the cry
and the melt remarkably well. Also, as expected from o
analysis of the error term, by simply reducing the degree
damping combined with an increase in the cutoff radius,
Ewald limit can be approached with arbitrary precision.

VIII. SUMMARY AND CONCLUSIONS

In this article we have described an exact method for
simulation of Coulombic systems by spherically truncate
pairwise 1/r summation. At the outset we observed that t
problems encountered when performing a spherically tr
cated pairwiser 21 sum in a crystal or liquid are a direc
consequence of the fact that, wherever one truncates,
system summed over is practically never neutral. O
method is based on recent work showing that the Coulo
potential in an arbitrarily disordered, condensed ionic syst
is short ranged. In this work, local charge neutrality
achieved by viewing an ionic crystal as a molecular syst
consisting of Bravais lattice sites on which complete m
ecules are placed, with the proviso that molecules may no
broken up so as to preserve charge neutrality.11,12 This
method contains Evjen’s approach4 as a special case.11,12

The key achievement in this article is the mapping o
spherically truncated, generally charged local environmen
the ions onto this molecular picture. This mapping demo
strates that any net charge in the local, spherical envir
ments of the ions arises from the breaking up of molecu
situated near the surface of the truncation sphere of each
In zeroth order, these charges may be thought of as sit
exactly atthe surface of the truncation sphere. The result i
simple expression for neutralizing the net charge in the tr
cation sphere of each ion, thus enabling the extraction of
Coulomb energy, forces, and stresses from the spheric
truncated environment in a straightforward, physically tra
parent manner.

An interesting computational aspect of the method is t
the physical concept of charge neutralization at the sys
surface is mathematically equivalent to the operational c
cept of shifting the pair potential to zero at the cutoff radiu
The charge-neutralized potential of the spherically trunca
system and all its derivatives therefore approach z
smoothly atRc . Spherical truncation with charge neutraliz
tion also eliminates the net dipole moment in the ‘‘molec
lar’’ system. However, in spite of this avoidance of a ma
roscopic polarization, the neutral local environments of
ions exhibit fluctuating dipoles which determine the effecti
range of the net Coulomb potential.

Our convergence analysis revealed that the energy of
charge-neutralized system approaches the correct Made
energy in a damped, oscillatory manner, demonstrating
the concepts of charge neutralization and damping are in
cately connected. This leads us naturally to the operatio
approach of simply damping the Coulomb pair potential
as to flatten out these already damped symmetric oscillat

e
of
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even faster. The practical challenge with this approach i
assess the systematic errors in the energy, forces,
stresses thus introduced for any assumed form of the da
ing function.

If we assume a damping function given by the comp
mentary error function, the above method offers a sim
physical interpretation of the Ewald method: Whereas
real-space term in the Ewald sum gives the energy assoc
with the damped,charged~i.e., unshifted! pair potential, the
less well understood reciprocal-space term represents
systematic error due to the damping. Interestingly, while t
error term can alter the values towards which the real-sp
potential and its derivatives converge, it further reduces
already short range of the undamped Coulomb potential

A detailed analysis of the reciprocal-space term has
abled us to show that the effective range of the Madelu
potential in a high-temperature solid or a liquid is identical
that of the Lennard-Jones potential. Analogous to the van
Waals potential, thisr 26 variation of the effective Madelung
potential arises from the interaction between fluctuating
poles present in any ionic equilibrium system.

Computationally our method is convenient and high
efficient. In particular, like the fast-multipole methods,8–10

the computational load increases as orderN. Unfortunately,
however, it is difficult to make a precise comparison betwe
them because of the number of parameters that can be v
to optimize the performance:a andRc for the direct summa-
tion, the highest order multipole included, and the volum
over which the multipoles are averaged in the fast-multip
methods. Nevertheless, since for any given system the
methods must both describe the same physics and since
are of orderN, their computational loads should not diffe
fundamentally for any given level of precision; one shou
keep in mind, however, that the prefactors in the two
proaches are not the same.

Because of the spherical truncation and fast conv
gence, any standard computer code developed for hand
pair potentials can be used to evaluate the Coulomb en
of an arbitrarily disordered, charged or neutral ionic syste
Moreover, the underlying highly localized nature of the Co
lomb potential, which translates into rather short cutoff ra
enables the use of a standard link-cell list,26 demonstrating
that our method is, indeed, an order-N method in both CPU
time and memory, although a standard neighbor list appro
can be used as well. This degree of simplicity has long b
sought for Coulombic systems. A shifted ‘‘spherical Ewa
truncation’’ was considered by Linse and Anderson34 with
limited success. Missing from their treatment were the c
ation of a charge-neutralized truncation sphere and the is
tion of dominant contributions to the pair potential describ
here.

Our method is particularly powerful for the simulation
interfacial systems, such as bicrystals, free surfaces,
liquid–vapor interfaces. Because of the absence of perio
ity in the direction normal to the interface, simulations
such systems require the use of Parry’s extension of the
Ewald sum appropriate for a slab geometry.25 Unfortunately,
in contrast with the 3D Ewald sum, the reciprocal-space te
in Parry’s solution cannot be reduced to a single sum. Ap
oaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP licen
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from the considerably greater mathematical complexity
Parry’s expressions, the fact that these double sums hav
be explicitly evaluated is prohibitively expensive; very fe
molecular-dynamics simulations of interfacial systems in
slab geometry have therefore been reported to date.35 On the
other hand, application of the 3D Ewald sum to such hig
inhomogeneous systems can give rise to long-range inte
tions, absent in the real system, between the two interfa
artificially introduced into the simulation cell. None of thes
problems arises in our directr 21 summation method for in-
terfacial systems; thereby it offers a unique tool by which
investigate interfacial phenomena, such as screening
space-charge effects at individual interfaces.
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